
A Type Theory for Presheaves Over a REEDY Category

Louise Leclerc

October 24, 2024

Abstract

We introduce a small type theory whose models are precisely the pesheaves over a given REEDY cate-
gory C with a given system of coverings, satisfying a certain assumption of local finiteness and presentability.
Our work is directly inspired from the Globular Type Theory of BENJAMIN, FINSTER and MIMRAM [2], and
the Simplicial Type Theory of RIEHL and SHULMAN [5].

1 Some category-theoretic definitions and results

Direct categories

We first recall the notion of direct category, then we introduce some tools that we will need later on.

Definition 1.1 : direct category

A category D is said to be a direct category when the following order ◁ on Ob(D) is well-founded.

a ◁ b ⇐⇒ (∃ f : a → b, f ̸= ida)

Remark 1.2
Note that a direct category has neither non-identity isomorphisms nor non-identity endomorphisms.

1.3 coverings. Let C be a direct category with finite slices C/c for c ∈ Ob(C) (that is a locally finite direct
category), then we let for c ∈ Ob(C) the covering F (c) of c be defined as the set of non-identity morphisms
u : b → c such that u has no non-trivial factorization.

F (c) := {u : b → c | f ̸= id ∧ ¬(∃(g, v), g ̸= id, v ̸= id, u = v ◦ g)}

We write such a morphism (u : b → c) ∈ F (c) as u : b ↣ c. We write F ∗(c) for F (c) ∪ {idc}.
Since C is assumed to have finite slices, we may observe that each non-identity morphism f : a → c

factors as
a b c

g v

And each u ∈ F (c) admits a unique such factorization, where v = u and g = id.

Definition 1.4 : Monic direct category

A direct category C is said to be monic if all its morphisms are monomorphisms.

Remark 1.5
Notice that when C is locally finite, it equivalent to ask that the morphisms of F are monomorphisms.

Definition 1.6 : two-layered boundaries

See Definition 1.19 for the more general case.

1.7 We are now going to present three important exemples, note that you may find some further references
on those on the nlab (see [1])

1

Exemple 1.8 (The category G+ of globes)
We consider the following category G+.

[0] [1] [2] [3] · · ·
τ0

σ0 σ1

τ1

σ2

τ2

σ3

τ3

whose set of objects is isomorphic to N (we denote [i] the i-th object), generated by the morphisms σi, τi :
[i] → [i + 1] subject to the coglobular relations:

(i ∈ N) σi+1 ◦ σi = τi+1 ◦ σi σi+1 ◦ τi = τi+1 ◦ τi

The maps σi (i ∈ N) are called the cosources and the τi (i ∈ N) the cotargets.
The order ◁ of Definition 1.1 is isomorphic to ω, so G+ is a direct category. It is locally finite and monic,

its coverings are given by F ([0]) = ∅ and F ([n + 1]) = {σn, τn}. And it has two-layered boundaries,
indeed, the pullback of σ0, τ0 : [0] ⇒ [1] is the empty sum, and the pullback of σn+1, τn+1 : [n + 1] ⇒ [n + 2]
is given by [n] + [n].

[n + 1] [n + 2]

[n] + [n] [n + 1]

σn+1

[σn , τn]

⌟
[σn , τn]

τn+1

Exemple 1.9 (The category ∆+ of simplices)
We consider the category ∆+ whose objects are the non-empty finite ordered sets [i] = {0 < 1 < · · · < i}
and whose maps are the increasing maps, called the cofaces. As for the category G, the order ◁ of Definition
1.1 is isomorphic to ω, so ∆+ is a direct category. It is locally finite and monic, its coverings are given by
F ([0]) = ∅ and F ([n + 1]) = {δi}0≤i≤n+1 where di is the only increasing map [n] → [n + 1] such that
i /∈ δi([n]). And it has two-layered boundaries, indeed, the pullback of δ0, δ1 : [0] ⇒ [1] is the empty sum,
and the pullback of δi, δj : [n + 1] ⇒ [n + 2] (i < j) is given by [n].

[n + 1] [n + 2]

[n] [n + 1]

δi

δj−1

⌟

δi

δj

Exemple 1.10 (The category ⧠+ of cubes)
We consider the category ⧠+ whose objects are the sets [i] = {0, 1}i for i ≥ 0. And whose maps are the
functions [i] → [j] which inserts 0 or 1 along a tuple. That is, maps

δk1, ε1, ··· , kj−i , ε j−i
: [i] −→ [j]

described as

[i] ≃ [1]i → [1]k1−1 × {ε1} × [1]k2−k1−1 × · · · × {ε j−i} × [1]j−kj−i ↪→ [1]j ≃ [j] .

Once again, the order ◁ is isomorphic to ω, making ⧠+ a direct category. It is also locally finite and monic,
its coverings are given by F ([0]) = ∅ and F ([n + 1]) = {δi, ε}0≤i≤n+1, 0≤ε≤1. Where

δi, ε : [n] −→ [n + 1]
(x1, · · · , xn) 7−→ (x1, · · · , xi−1, ε, xi, · · · , xn)

For two maps δi, 0 : [n] → [n + 1] and δi, 1 : [n] → [n + 1], their pullback in ⧠̂+ is the empty presheaf. And
for any two maps δi, ε : [n + 1] → [n + 2] and δj, η : [n + 1] → [n + 2] where i < j, their pullback is given as
follows:

[n + 1] [n + 2]

[n] [n + 1]

δi, ε

δj−1, η

⌟

δi, ε

δj, η

2

Hence ⧠+ has two-layered boundaries.

Definition 1.11 : Boundaries

Let C be a direct category and c ∈ Ob(C) an object. The boundary of c, denoted ∂c, is the presheaf on
C defined by ∂c(b) = { f : b → c | f ̸= id}.

Proposition 1.12 : Decomposition of boundaries

See Proposition 1.18 for the more general case.

Definition 1.13 : Ĉ f

Let C be a category. We let Ĉ f denotes the category of finite colimits of representable presheaves over
the category C. We call Ĉ f the category of finitely generated presheaves.

Remark 1.14
Note that Ĉ f is a full subcategory of Ĉ which contains the boundaries. When C is a locally finite and direct
category, since any representable presheaf is finite and any finite presheaf may be expressed as a finite
colimit of representable presheaves, Ĉ f may alternatively be described as the category of finite presheaves
over C.

REEDY categories

We now get to the more general case of REEDY categories, introduce the notion of eleguant REEDY category
and study some of their properties.

Definition 1.15 : REEDY category

A REEDY category C consist of the following data.

• A category C

• Two wide subcategories C+ and C−, where wide means "with the same objects than C".

• A degree function deg : Ob(C) → α for some ordinal α.

Such that

• Every morphism of C− (resp. C+) lowers (resp. increases) the degree.

• (Mor(C−), Mor(C+)) is a strict factorization system, that is: every map f factors uniquely as
f+ ◦ f− where f− ∈ Mor(C−) and f+ ∈ Mor(C+).

Remark 1.16
From those properties, one see that C+ ∩ C− contains exactly the identities. Moreover, the category C+ is
always a direct category.

Definition 1.17 : Boundaries

Let C be a REEDY category and c ∈ Ob(C) an object. The boundary of c, denoted ∂c, is the presheaf on
C defined by ∂c(b) = { f : b → c | f factors through F (c)}.

3

Proposition 1.18 : Decomposition of boundaries

Let c ∈ Ob(C) an object of a REEDY category, and let (a(u, v), p1, p2) be the choice of a pullback in
Ĉ for any two maps u ̸= v ∈ F (c). Then ∂c may be seen as the colimit

∂c = colim
(
Dc → Ĉ

)
Where Dc is the category whose objetcs are

Ob(Dc) = {bu}u∈F (c) ∪ {a(u, v)}u ̸=v∈F (c)

and the arrows are the legs p1, p2 of each pullback. The structural maps of the colimit being given
by the u : bu → ∂c obtained by the YONEDA lemma.

Definition 1.19 : two-layered boundaries

A locally finite REEDY category C will be said to have two-layered boundaries if for any two distinct
u1, u2 ∈ F (c), the pullback of u1 : b1 → c and u2 : b2 → c (well defined in Ĉ) decomposes as a
(finite) coproduct of representable presheaves, and the projections p1, p2 of this pullback decompose
accordingly as morphisms in F .
That is, there is a finite set Ju1, u2 such that the coproduct a(u1, u2) of the aj(u1, u2) (j ∈ Ju1, u2) in
Ĉ is the aforementioned pullback. Then, writing pi, j(u1, u2) for the j-th component of the projection
pi(u1, u2) : a(u1, u2) → bi, we have pi, j(u1, u2) ∈ F (bi) for every i, j.

b1 c

a(u1, u2) b2

p1(u1, u2)

u1

u2

p2(u1, u2)

⌟

Remark 1.20
Notice that such a pullback is always a finite coproduct of representable presheaves, because it may be
expressed as a weighted colimit of such, with a weight whose category of element is finite. Moreover, if it
decomposes as a coproduct of representable presheaves, then this decomposition is unique, hence canonical.
So having two-layered boundaries is a property, and not an additional structure on a REEDY category C.

Definition 1.21 : Degenerated cell

Let X ∈ Ĉ where C is a REEDY category, we say that a cell x of X (that is an element x ∈ X(c) for some
c ∈ Ob(C)) is degenerated iff it may be written p∗y for some other cell y and p ∈ C−.
A cell is said to be non-degenerated iff it is not degenerated.

Definition 1.22 : Eleguant REEDY category

A REEDY category C is said to be eleguant if every cell of any presheaf X ∈ Ĉ may be written as p∗x
for a unique pair (p, x) of a map p ∈ Mor(C−) and a cell x which is non-degenerated.

Exemple 1.23 (The category G of reflexive globes)
The category G has the same objects as G+ (Exemple 1.8). The degree function is given by deg([n]) = n,
G+ is the category of Exemple 1.8, and G− is generated by the maps ι : [n + 1] → [n] subject to the relations
ι ◦ σ = id and ι ◦ τ = id. One may check that G is an eleguant REEDY category with two-layered boundaries
(given as for G+).

Exemple 1.24 (The category ∆ of simplices with degeneracies)
The category ∆ has the same objects as ffi+ (Exemple 1.9). The degree function is given by deg([n]) = n, ∆+

4

is the category of Exemple 1.9, and ∆− is generated by the maps si : [n + 1] → [n] (0 ≤ i ≤ n) subject to the
relations

• σj ◦ σi = σi ◦ σj+1 when i ≤ j

• σj ◦ δi =


δi ◦ σj−1 if i < j.
id if i ∈ {j, j + 1}.
δi−1 ◦ σj if i > j + 1.

One may check that ∆ is an eleguant REEDY category with two-layered boundaries (given as for ∆+).

Exemple 1.25 (The category ⧠ of cubes with degeneracies)
The category ⧠ has the same objects as ⧠+ (Exemple 1.10). The degree function is given by deg([n]) = n,
⧠+ is the category of Exemple 1.10, and ⧠− is generated by the maps si : [n + 1] → [n] (0 ≤ i ≤ n) subject
to the relations

• σj ◦ σi = σi ◦ σj+1 when i ≤ j

• σj ◦ δi = σj ◦ δi, ε =


δi, ε ◦ σj−1 if i < j
id if i = j
δi−1, ε ◦ σj if i > j

(Please refer to [3] for a more precise presentation of the category of cubes.) One may check that ⧠ is an
eleguant REEDY category with two-layered boundaries (given as for ⧠+).

1.26 In the following, we fix a locally finite and eleguant REEDY category C indexed over ω. We will
characterize the category Ĉ f of its finitely generated presheaves.

Lemma 1.27

If X is a representable presheaf over C, then it has a finite number of non-degenerated cells.

Proof. Suppose X = hom(–, c). Then a cell x : b → c is non-degenerated iff it does not factor as y ◦ p for
some p : b → a in C− a non-identity. By the factorization property of REEDY categories, this happens iff
x ∈ C+. Howether, because C+ is direct and locally finite, the set

⊔
b∈Ob(C)(homC+(b, c)) is finite. Whence

the result.

Lemma 1.28

Let X ∈ Ĉ f , then X admits a finite set of non-degenerated elements {xi}1≤i≤n. Moreover, each
element y ∈ X is a unique degeneracy of a unique xi. We call the xi’s the generators of X.

Proof. Assuming the first statement to be proven, the second one is by definition of an eleguant Reedy
category. As to the first one, let F : I → C be a finite diagram in C, seen as a diagram in Ĉ. Suppose that X is
a colimit of F, then for all c ∈ Ob(C), Xc may be expressed as the quotient

⊔
i∈Ob(I) F(i)c

/
∼ where ∼ is the

identification x ∼ F(α)(x) for every α ∈ Mor(I).
Notice that the set Xnd of non-degenerated cells in X is included in the set [

⊔
i∈Ob(I) F(i)nd] of classes of

non-degenerated cells of the F(i)′s.
We then conclude that it is finite using Lemma 1.27 and the finiteness of I .

Theorem 1.29

A presheaf X ∈ Ĉ is finitely generated iff its set of non-degenerated cells is finite.

Proof. Lemma 1.28 gives the first implication. We now see the converse one.
Suppose that X has a finite set of non-degenerated cells Xnd = {xi}1≤i≤n. Let PX denotes the full subcat-
egory of

∫
X whose objects are the f ∗xi for some i and f ∈ C+. For h ∈ Mor(C), there is a morphism

h : f ∗xi → g∗xj in PX iff h∗g∗xj = f ∗xi. Our assumptions on C ensures that PX is a finite category. Let
π : P → C be the canonical projection, sending f ∗xi ∈ Xb to b, and a morphism h to itself. Then the YONEDA

5

embedding Y : C → Ĉ gives a cocone π ⇒ ∆X , where ∆X denotes the constant functor of value X. We now
check that this cocone is universal.
Let φ : π ⇒ Y for some Y ∈ Ĉ, if φ factors through ψ : X → Y, then ψ(xi) = φ(xi) for all i. Using the
YONEDA embedding, we may see φ(z) as an element in Yb when z ∈ Xb. Hence, ψ is entirely and well-
defined as a function, by ψ(f ∗xi) = f ∗φ(xi) for any i and f ∈ C−.
Now, we check the naturality of ψ. First consider some xi ∈ Xnd and some f ∈ Mor(C) such that f ∗xi is
well defined. We write f = f+ ◦ f− for f+ ∈ C+ and f− ∈ C−, then we check ψ(f ∗xi) = f ∗ψ(xi). The cell
f ∗+xi may be written p∗xj for some j and p ∈ C−. By definition of PX , there is an arrow p : g∗+xi → xj in PX .
Hence, φ(f ∗+xi) = p∗φ(xj). Moreover, f ∗xi = f ∗−p∗xj, then

ψ(f ∗xi) = ψ(f ∗−p∗xj) = f ∗−p∗φ(xj) = f ∗−φ(f ∗+xi) = f ∗− f ∗+φ(xi) = f ∗ψ(xi)

Let z be any cell of X, written z = f ∗xi for some i and f ∈ C−. Let g ∈ Mor(C) such that g∗z makes sense.
Then we shall check that ψ(g∗z) = g∗ψ(z). That is, ψ(g∗ f ∗xi) = g∗ψ(f ∗xi). By the previous computation,
ψ(f ∗xi) = f ∗ψ(xi) and ψ(g∗ f ∗xi) = g∗ f ∗ψ(xi) holds, whence the result.

2 Presheaves over direct categories

In this section we fix a locally finite, monic direct category C with two-layered boundaries. And we will
define a type theory whose contexts are the finite presheaves on C. Its models will corresponds to the
presheaves Ĉ. In the following, we let Ju, v and pi, j(u, v) be the indexing sets and legs for the chosen
pullbacks of two maps u, v of F , sticking with the notations of Definition 1.19.

The type theory

We first define the formal system, which will constitute the type theory. We will refer to it as PRETTY+, a
short for Presheaf Type Theory, where the + refers to the case of direct categories. If we need to precise the
direct category C we are working with, we will write PRETTYC .

2.1 Syntax. We begin by defining the notions of terms, types, contexts and substitutions for our type theory.
First, we assume having an infinite and well ordered set of variables, which we write (A, ≤). We may take
A = ω. When considering an implementation of the theory, we shall ask for a decidable equality on A.

• A term (denoted t, s . . .) is an element of A (that is a variable).

• A type (denoted τ, σ . . .) is a pair τ = (c, (tu)u∈F (c)) where c ∈ Ob(C) and tu are terms. We let τ = c
and τ(u) = tu for u ∈ F (c).

• A context (denoted Φ, Ψ . . .) is a list (x1:τ1, · · · , xn:τn) where the xi’s are variables and the τi’s are
types. The empty context is denoted ∅.

• A substitution (denoted α, β . . .) is a list ⟨x1 7→ t1, · · · , xn 7→ tn⟩ where the xi’s are variables and the
ti’s are terms. The empty substitution is denoted ⟨⟩.

2.2 Judgments. There are several kinds of derivable judgment in our theory. Informally:

• The judgment "Φ ctx" expresses that Φ is a well-formed context.

• The judgment "Φ ⊢ τ type" expresses that the type τ is a well-formed type in the context Φ.

• The judgment "Φ ⊢ t : τ" expresses that t is a term of type τ in the context Φ.

• The judgment "Φ ⊢ α : Ψ" expresses that α is a substitution of type Ψ in the context Φ (we also say that
α is a substitution from Φ to Ψ).

2.3 Free variables. We define by induction on the syntax the set FV(x) ⊆ A of free variables for x a term,
type, context or substitution.

• on terms (and variables): FV(t) = {t}.

• on types: FV((c, (tu)u∈F (c))) =
⋃

u∈F (c) FV(tu).

6

• on contexts: FV((x1:τ1, · · · , xn:τn)) = {xi}1≤i≤n.

• on substitutions: FV(⟨x1 7→ t1, · · · , xn 7→ tn⟩) =
⋃

1≤i≤n FV(ti).

2.4 Substitutions in terms and types. We define, for a term t (resp. a type τ), the action of a substitution
α = ⟨x1 7→ t1, · · · , xn 7→ tn⟩ on the term t (resp. the type τ), denoted t[α] (resp. τ[α]).

• for t a term: t[α] =
{

ti if t = xi for some i.
t in the other cases.

• for τ = (c, (tu)) a type: τ[α] = (c, (tu[α])).

2.5 Identities and compositions for substitutions. For any context Φ = (x1:τ1, · · · , xn:τn), we may define
a substitution, called the identity substitution on Φ as

idΦ = ⟨x1 7→ x1, · · · , xn 7→ xn⟩.

and given two substitutions α and β = ⟨x1 7→ t1, · · · , xn 7→ tn⟩, we may define their composition β ◦ α as

⟨x1 7→ t1[α], · · · , xn 7→ tn[α]⟩

2.6 Inference rules. We give below the inference rules for the type theory:

∅ ctx
CTX-EMP

Φ ⊢ τ type

(Φ, x:τ) ctx
CTX-EXT (x /∈ FV(Φ))

context rules

(Φ, x:τ) ctx

Φ, x:τ ⊢ x : τ
VAR

Φ ⊢ τ1 type Φ ⊢ t : τ2

Φ, x:τ1 ⊢ t : τ2
WKG (x /∈ FV(t) ∪ FV(Φ))

typing rules

Φ ctx
∧

u∈F (c)

Φ ⊢ tu : τu
∧

u1 ̸=u2∈F (c)
j∈Ju1, u2

τu1(p1, j) = τu2(p2, j)

Φ ⊢ (c, (tu)u∈F (c)) type
TYPE

type introduction rule

Φ ctx

Φ ⊢ ⟨⟩ : ∅
SUB-EMP

Φ ⊢ α : Ψ (Ψ, x:τ) ctx Φ ⊢ t : τ[α]

Φ ⊢ ⟨α, x 7→ t⟩ : (Ψ, x:τ)
SUB-EXT

substitution rules

Some properties of PRETTY+

We now expose some properties of the theory and study its syntactic category. Since PRETTY+ is a special
case of PRETTY which we will define later on, we postpone most of the proofs to the more general setting.

Lemma 2.7

The following properties may be shown by induction on the derivation trees.

• If "Φ ⊢ τ type" is derivable, so is "Φ ctx" and FV(τ) ⊆ FV(Φ).

• If "Φ ⊢ t : τ" is derivable, so is "Φ ⊢ τ type" and FV(t) ⊆ FV(Φ).

7

• If "Φ ⊢ α : Ψ" is derivable, so are "Φ ctx" and "Ψ ctx".

• If "Φ ⊢ (c, (tu)u∈F (c)) type" is derivable, all terms tu are typeable is the context Φ.

Lemma 2.8 : Uniqueness of type

In a given context Φ, a term t admits at most one type. That is there is at most one type τ such that
"Φ ⊢ t : τ" is derivable. Moreover, in this case, the pair (t : τ) appears in the list Φ.

Proof. By induction on the derivation tree.

Lemma 2.9 : Uniqueness of derivations

A given judgment admits at most one derivation tree.

Proof. At most one inference rule leads to each form of judgment.

Lemma 2.10

The following rules are admissible.

Ψ ⊢ τ type Φ ⊢ α : Ψ

Φ ⊢ τ[α] type
SUB-TYP

Ψ ⊢ t : τ Φ ⊢ α : Ψ

Φ ⊢ t[α] : τ[α]
SUB-TERM

Φ ⊢ α : Ψ Ψ ⊢ β : Θ

Φ ⊢ β ◦ α : Θ
SUB-COMP

Φ ctx

Φ ⊢ idΦ : Φ
SUB-ID

Lemma 2.11

For any term t or type τ, when any of the following equation makes sense, it is satisfied.

t[idΦ] = t t[β][α] = t[β ◦ α]

τ[idΦ] = τ τ[β][α] = τ[β ◦ α]

The syntactic category

We will now define and characterise the syntactic category of PRETTY+.

Definition 2.12 : Syntactic category

The syntactic category of the type theory PRETTY+, denoted SPRETTY+ is defined as follows.

• It has as objects the contexts Φ such that "Φ ctx" is derivable.

• It has as morphisms α : Φ → Ψ the substitutions α such that Φ ⊢ α : Ψ is derivable.

Remark 2.13
Note that it is a well-defined category thanks to Lemmas 2.10 and 2.11.

2.14 interpretation. We will now define an interpretation J–K of contexts, types and substitutions. This
data will assemble as an equivalence of categories J–K : SPRETTY+ → Ĉ f .

8

Definition 2.15 : Interpretation of contexts

Let Φ be a context, JΦK ∈ Ĉ f is defined as follows.

JΦKc = {t ∈ A | Φ ⊢ t : τ holds for some τ with τ = c}
= {t ∈ FV(Φ) | (t, (c, –)) ∈ Φ}

And, for any t : τ in JΦKc and u ∈ F (c), u∗t = τ(u).

Definition 2.16 : Interpretation of types

Let τ be a type in some context Φ,
JτKΦ : ∂τ → JΦK

is defined such that for any (u : b → τ) ∈ F (τ), JτKΦ, b(u) = τ(u).

Remark 2.17
By factorizability of morphisms of C as maps in F , the above determines completely the presheaf JΦK or the
transformation JτKΦ. However, we shall check that both are well-defined, this is done with the following
lemma.

Lemma 2.18

For any context Φ (resp. type τ in a context Φ), its interpretation JΦK (resp. JτKΦ) is well-defined.
Moreover, the following holds:

(i) For a context Φ such that Φ ⊢ x : τ and f : b → τ , f ∗x = JτKΦ, b(f). That is, we have the
following commutative diagram in Ĉ f , where c = τ.

∂c c

JΦK

t
JτKΦ

(ii) For a type τ = (c, (tu)u∈F (c)) in a context Φ and u : bu ↣ c, JτKΦ|bu = JτuK where Φ ⊢ tu : τu.

Definition 2.19 : Interpretation of substitutions

For any substitution α = ⟨x1 7→ t1, · · · , xn 7→ tn⟩ such that Φ ⊢ α : Ψ is derivable, we let

JαK : JΨK → JΦK be defined by JαK(xi) = ti

That is, we have the equations JαK(x) = x[α].

Lemma 2.20

Definition 2.19 yields a natural transformation, preserves identities and reverse compositions.

Proof. Every morphism f : z → c in C factors as a finite composition of maps ui of F :

f = un ◦ · · · ◦ u1

for some n ∈ N. So it suffices to show that JαK commutes with the ui’s.
Let x ∈ JΨKc for some c ∈ Ob(C). Then Ψ ⊢ x : τ is derivable for some τ with τ = c. Hence, using

Lemma 2.10, we have Φ ⊢ t[α] : τ[α] derivable, so t[α] = JαK(t) ∈ JΨKc. Moreover, for any u ∈ F (c),
u∗(t[α]) = τ[α](u) = τ(u)[α] = (u∗t)[α], whence JαK(u∗t) = u∗(JαK(t)). Which yields the naturality.

9

We see by definition that identity substitution is sent to identity transformation and that composites of
substitutions are sent to the reverse composites of transformations.

Definition 2.21 : J–K : SPRETTY → Ĉop
f

The interpretation of contexts and substitutions as given by Definitions 2.15 and 2.19 yields a con-
travariant functor from the syntactic category to the category of finite presheaves on C, which we
denote J–K and call the interpretation or semantic functor.

Lemma 2.22

Let α : ∂c → JΦK for some context Φ, then α = JταKΦ for some unique well-formed type τα in the
context Φ.

Lemma 2.23

Let Φ be a context and Ψ = (Φ, x : τ) obtained by ctx-EXT. Then JΨK is the following pushout:

∂c JΦK

c JΨK

JτKΦ

x

⌟

Proof. The commutatitvity of the square above is by definition of JΨK. Let Z be a presheaf over C and
α : JΦK → Z, z ∈ Zc such that the following square commutes:

∂c JΦK

c Z

JτKΦ

α

z

If α and z factor through some β : JΨK → Z, then β is completely determined as a function by β|JΦK = α
and β(x) = z. In order to see that β defined as such is natural, we need to check that for any morphism
f : a → c, α(f ∗x) = f ∗z. Assuming f ̸= id, this is given by the assumption α ◦ JτKΦ = z together with the
point (i) of Lemma 2.18.

Theorem 2.24

J–K : SPRETTY+ −→ Ĉop
f is an equivalence of categories.

Proof. We need to check that J–K is fully faithfull and essentially surjective. We fix two contexts Φ and Ψ.

• faithfullness. Let φ : JΨK → JΦK be a natural transformation. Suppose φ = JαK for some substitution α.
Then α must be of the form ⟨x 7→ φ(x)⟩x∈FV(Ψ), whence the faithfullness.

• fullness. Let φ : JΨK → JΦK be a natural transformation and let α = ⟨x 7→ φ(x)⟩x∈FV(Ψ). For any
t ∈ JΨKc, t is a variable in FV(Ψ) according to Lemma 2.8. Hence JαK(t) = φ(t), whence φ = JαK.

• essential surjectivity. Let X ∈ Ĉ f . According to Remark 1.14, X admits a finite number of elements xi
(1 ≤ i ≤ n). We proceed by induction on n.

– Suppose n = 0, then X is the empty presheaf, and is the image of the empty context.

10

– Suppose n > 0. Suppose x = xn ∈ Xc is maximal in the sense that it may not be written as
f ∗y for some other cell y of X. Let Y := X \ {x}. Since x is maximal, we may check that Y is
again a (finite) presheaf. There is an inclusion Y ↪→ X and a map c x→ X given by the YONEDA

embedding. We see that those two maps exhibit X as the following pushout:

∂c Y

c X

x|∂c

x

⌟

Let z : c → Z (seen as z ∈ Zc) and φ : Y → Z such that φ ◦ x|∂c = z|∂c. If, φ and z factor
through ψ : X → Z, then ψ(x) = z and ψ|Y = φ : Y → Z, so ψ is completely defined as a natural
transformation X → Z.
In order to see that ψ defined as such is a well-defined natural transformation, we need to see
that for any f : z → c, ψ(f ∗x) = f ∗ψ(x). Assuming f ̸= id, this equation is precisely given by the
assumption φ ◦ x|∂c = z|∂c.
Now, using the induction hypothesis with Y yields a context Φ such that JΦK ≃ Y, and Lemma
2.22 gives a type τ in Φ such that JτK = x|∂c. Then Lemma 2.23 proves that X ≃ JΦ, x : τK, where
Φ, x : τ is obtained by CTX-EXT from Φ.

3 Presheaves over REEDY categories

3.1 Assumptions. In this section we fix C an elegant REEDY category with two-layered boundaries, indexed
over the ordinal ω, with two wide subcategories C+ and C− as classes of upward and downard maps. We
moreover assume that :

• The category C+ is locally finite and monic.

• We are given a finite presentation P of C− which does not contains identities.

Our aim is to define an extension of PRETTY+, which we call PRETTY (or PRETTYC), whose syntactic cate-
gories consists of finitety generated presheaves over C, and whose models are the presheaves over C.
We stick to the notations F , Ju, v, pi, j(u, v) and aj(u, v) introduced in Section 2. For any composable pair

c′ d c
p∈Pv∈F (d)

such that p ◦ v ̸= id, we will assume the unique factorisation of p ◦ v in (C−, C+) to be given by

c′ b c
w(p, v)∈F (c)q(p, v)∈P

.

The type theory

We first define the theory PRETTY, an extension of the theory PRETTY+. If we need to precise the category
C we are working with, we will write PRETTYC .

3.2 Terms. We consider the type theory for presheaves over C+, which we denote PRETTY+ and extend it
to the type theory PRETTY by adding formal degenerescences to variables. The terms of PRETTY are given
by the following grammar:

tm ::= x (x ∈ A)
| p∗tm (p ∈ P)

where A still denotes a denumerable set of variables as assumed in Subsection 2. We denote their set by tm.

3.3 Syntax. As the theory PRETTY+, PRETTY has terms, types, contexts and substitutions. The terms are given
by 3.3. The syntax of types, contexts, and substitutions remains unchanged from PRETTY+.

3.4 Judgments. In addition to the four kind of judgment introduced for PRETTY+, we add the following
kinds.

11

• The judgment "Φ ⊢ t ≡ u" expresses that in the context Φ, the terms t and u are semantically equals.

• The judgment "Φ ⊢ τ ≡ σ type" expresses that in the context Φ, the types τ and σ are semantically
equals.

• The judgment "⊢ Φ ≡ Ψ ctx" expresses that the contexts Φ and Ψ are semantically equals.

3.5 Free variables. The free variables of a term are now given by:

• FV(x) = {x} for x ∈ A.

• FV(p∗t) = FV{t} for t a term and p ∈ P.

The definition of free variables for types, contexts, and substitution remains unchanged from PRETTY+.

3.6 Substitutions in terms and types. We define the action of a substitution α = ⟨xi 7→ ti⟩i in a term as
follows.

• For x a variable:

x[α] =
{

ti if x = xi for some i.
x in the other cases.

• For t a term and p ∈ P:
(p∗t)[α] = p∗(t[α])

Substitutions act on types exactly as they do in PRETTY+ (c.f. 2.4).

3.7 Action of degeneracies on types. Let (p : d → c) ∈ P, t a term, and τ = (c, (tu)u∈F (c)) a type. Then
we define a type (p, t)∗τ = (d, (sv)v∈F (d)), where

sv =

{
t if p ◦ v = idc.

q(p, v)∗tw(p, v) in the other cases.

Notice that when it makes sense, the following equation holds:

((p, t)∗τ)[α] = (p, t)∗(τ[α])

3.8 Inference rules. In addition to the rules already introduced for PRETTY+, we add the following ones:

Φ ⊢ t : τ (p : – → τ) ∈ P
Φ ⊢ p∗t : (p, t)∗τ

DEGE
Φ ⊢ t : τ (p1 ◦ · · · ◦ pn)P(q1 ◦ · · · ◦ qm)

Φ ⊢ p∗n · · · p∗1t ≡ q∗m · · · q∗1t
REL

degeneracy rules

Φ ⊢ t : τ

Φ ⊢ t ≡ t
REFL

Φ ⊢ t ≡ u
Φ ⊢ u ≡ t

SYM
Φ ⊢ t ≡ u Φ ⊢ u ≡ v

Φ ⊢ t ≡ v
TRANS

Φ ⊢ t : τ Φ ⊢ u : τ Φ ⊢ t ≡ u (p : – → τ) ∈ P
Φ ⊢ p∗t ≡ p∗u

EQUIV

Φ ⊢ τ type Φ ⊢ σ type
∧

u∈F (c)

Φ ⊢ τ(u) ≡ σ(u)

Φ ⊢ τ ≡ σ type
TYPE-EQ τ = σ = c

⊢ Φ ≡ Ψ ctx Φ ⊢ τ ≡ σ type

⊢ (Φ, x : τ) ≡ (Ψ, x : σ) ctx
CTX-EQ x /∈ FV(Φ) ∩ FV(Ψ)

equality rules

12

Some properties of PRETTY

The following lemmas may be proven by induction on the derivation trees.

Lemma 3.9

The following properties may be shown by induction on the derivation trees.

• If "Φ ⊢ τ type" is derivable, so is "Φ ctx" and FV(τ) ⊆ FV(Φ).

• If "Φ ⊢ t : τ" is derivable, so is "Φ ⊢ τ type" and FV(t) ⊆ FV(Φ).

• If "Φ ⊢ α : Ψ" is derivable, so are "Φ ctx" and "Ψ ctx".

• If "Φ ⊢ (c, (tu)u∈F (c)) type" is derivables, all terms tu are typeable is the context Φ.

• If "Φ ⊢ t ≡ s" is derivable, then there are types τ, σ such that Φ ⊢ t : τ, Φ ⊢ s : τ and
Φ ⊢ τ ≡ σ holds.

• If "⊢ Φ ≡ Ψ ctx" is derivable, then a judgment "Φ ⊢ τ type" holds iff "Ψ ⊢ τ type" holds. And
similarly, "Φ ⊢ t : τ" holds iff "Ψ ⊢ t : τ" holds.

Lemma 3.10 : Uniqueness of type

In a given context Φ, a term t admits at most one type up to ≡.

Lemma 3.11

A judgment Φ ⊢ t : τ holds iff there is a sequence of composable elements p1, · · · , pn ∈ P, a variable
x ∈ FV(Φ) and a type σ such that

t = p∗n · · · p∗1 x τ = (pn, p∗n−1 · · · p∗1 x)∗ · · · (p1, x)∗σ with (x : σ) ∈ Φ.

Lemma 3.12

Φ ⊢ t ≡ s holds iff there are sequences p1, · · · pn ∈ P and q1, · · · qm ∈ P and a variable x ∈ FV(Φ)
such that

t = p∗n · · · p∗1 x s = q∗m · · · q∗1 x with (p1 ◦ · ◦ pn)P(q1 ◦ · · · qm)

Hence we denote unambiguously f ∗x for the class of p∗n · · · p∗1 x in Tm/≡ given by any choice of
decomposition f = p1 ◦ · · · ◦ pn with pi ∈ P for all i’s.

The syntactic category

3.13 As for the direct case, the rules exposed in Lemma 2.10 are still admissible. Moreover, notice that
every valid derivation tree in PRETTY+ remains valid in PRETTY, hence every context (resp. substitution)
in PRETTY+ is a context (resp. substitution) in PRETTY.

Definition 3.14 : SPRETTY

We let SPRETTY denotes the category whose objects are the well-formed contexts of PRETTY, and
morphisms are the well-defined substitutions up to ≡. According to the previous assertion, there is
a functor SPRETTY+ → SPRETTY which is the identity on objects and morphisms.

13

Definition 3.15 : Interpretation of contexts

For Φ ctx a well-formed context of PRETTY, its interpretation is the finitely generated presheaf JΦK ∈
Ĉ f defined by

JΦKc = {t : τ | Φ ⊢ t : τ is provable and τ = c}/ ≡

And, for any t : τ in JΦKc and u ∈ F (c), JΦK(u)(t) = τ(u), for any p ∈ P, JΦK(p)(x) = p∗x.

Definition 3.16 : Interpretation of types

For Φ ⊢ τ type a derivable judgment, the interpretation of τ is the natural transformation

JτKΦ : ∂τ → JΦK

such that for (u : b → τ) ∈ F (τ), JτKΦ, b(u) = τ(u).

Remark 3.17
By factorizability of morphisms of C as maps in F and P, Definition 3.15 above determines completely
the presheaf JΦK. On the other hand, since any element of ∂τ factorizes by some element u ∈ F (τ), the
transformation JτKΦ is also fully determined by the specification of Definition 2.16. However, we shall
check that both are well-defined, this is done with the following lemma.

Lemma 3.18

For any context Φ (resp. type τ in a context Φ), its interpretation JΦK (resp. JτKΦ) is well-defined.
Moreover, the following holds:

(i) For a context Φ such that Φ ⊢ x : τ and f : b → τ , f ∗x = JτKΦ, b(f). That is, we have the
following commutative diagram in Ĉ f , where c = τ.

∂c c

JΦK

t
JτKΦ

(ii) For a type τ = (c, (tu)u∈F (c)) in a context Φ and u : bu ↣ c, JτKΦ|bu = JτuK where Φ ⊢ tu : τu.

Proof. We proceed by induction on derivation trees to prove those properties.

• (well-definedness of JΦK) Suppose that "Φ ctx" is derivable.

• Either Φ = ∅ is the empty context and JΦK = ∅ is well-defined as the empty presheaf.
• Or Φ = (Ψ, x : τ) is obtained by context extension (using CTX-EXT) of Ψ. Let c = τ. In this

case, JΨK and JτKΨ : ∂c → JΨK are already defined. Hence JΦK may be described as the following
pushout.

∂c JΨK

c JΦK

JτKΨ

x

⌟

• (well-definedness of JτKΦ) Suppose that "Φ ⊢ τ type" is derivable. Then the following premises of rule
TYPE holds.

Φ ctx
∧

u∈F (c)

Φ ⊢ tu : τu
∧

u1 ̸=u2∈F (c)
j∈Ju1, u2

τu1(p1, j) = τu2(p2, j)

14

Suppose given two distinct factorizations f = u ◦ g = v ◦ h of some element f ∈ (∂c)z where τ = c
and u : bu ↣ c, v : bv ↣ c. By monicness of u, v it must be the case that u ̸= v. Then the universal
property of the pullback a(u, v) yield a commutative diagram in Ĉ.

bu c

a bv

z

g

h

p2

p1

u

v

k

⌟

Since z ∈ C, k : z → a must factor as k j : z → aj through some aj ↪→ a, for some j ∈ Ju, v. Hence, the
assumption τu(p1, j) = τv(p2, j) allows us to write

g∗tu = k∗j p∗1, j tu = k∗j τu(p1, j) = k∗τv(p2, j) = k∗j p∗2, j tv = g∗tv .

We then see that JτKΦ is natural: if f1 : a1 → c equals f2 ◦ g for f1 and f2 : a2 → c two elements of ∂c,
then picking a factorization f2 = u ◦ h for some u ∈ F (c) yields

JτKΦ(f1) = JτuKΦ(g ◦ h) = g∗JτuKΦ(h) = g∗JτKΦ(f2) .

(i) Suppose that Φ ⊢ x : τ is derivable and let f : b → c where c = τ. Let f = u ◦ g be a factorization
where u ∈ F . Then

f ∗x = g∗u∗x = g∗τ(u) = JτKΦ(u ◦ g) = JτKΦ, b(f) .

Where we have used the definition of JΦK and the naturality of JτK.

(ii) Suppose τ = (c, (tu)u∈F (c)) is such that "Φ ⊢ τ type" is derivable. Let u : bu ↣ c and suppose tu : τu.
Then for any f : z → bu, we have

JτKz(u ◦ f) = f ∗JτKbu(u) = f ∗τ(u) = JτuKΦ(f) .

Where we have used the naturality of JτKΦ and the point (i).

Definition 3.19

For any substitution α = ⟨x1 7→ t1, · · · , xn 7→ tn⟩ such that Φ ⊢ α : Ψ is derivable, we let

JαK : JΨK → JΦK be defined by JαK(f ∗xi) = f ∗ti

That is, we have the equations JαK(t) = t[α].

Lemma 3.20

Definition 3.19 yields a natural transformation, preserves identities and reverse compositions.

Proof. Let α be a substitution from Φ to Ψ. Let t ∈ JΨKc for some c ∈ Ob(C). Then Ψ ⊢ t : τ is derivable for
some τ with τ = c. Hence as mentionned in 3.13, we have Φ ⊢ t[α] : τ[α] derivable, whence t[α] = JαK(t) ∈
JΨKc. Hence JαK is well-defined.

Now we check the naturality. By assumptions on C, any morphism is a composition of maps u ∈ F (c)
for some c and p ∈ P. So it suffices to show that JαK commutes with the u’s and the p’s.

• for any u ∈ F (c), JΦK(u)(t[α]) = τ[α](u) = τ(u)[α] = (JΦK(u)(t))[α].

• for any p ∈ P, JΦK(p)(t[α]) = p∗(t[α]) = (p∗t)[α] = (JΦK(p)(t))[α].

Whence the naturality.
We see by definition that identity substitution is sent to identity transformation and that composites of

substitutions are sent to the reverse composites of transformations.

15

Definition 3.21 : J–K : SPRETTY → Ĉop
f

The interpretation of contexts and substitutions as given by Definitions 3.15 and 3.19 gives a con-
travariant functor from the syntactic category to the category of finite presheaves on C, which we
denote J–K and call the interpretation or semantic functor.

Lemma 3.22

Let α : ∂c → JΦK for some context Φ, then α = JταK for some unique well-formed type τα up to ≡ in
the context Φ.

Proof. We proceed by induction on the object c ∈ Ob(C), using the well-foundedness of ◁. Using the
universal property of ∂c given by Proposition 1.18, α restricts to maps αu : bu → JΦK for all (u : bu → c) ∈
F (c), which corresponds to terms (α(u) = tu : τu) ∈ JΦKbu according to Definition 3.15, for tu, τu defined
up to ≡. By Lemma 3.18, JτuKΦ is the restriction of tu along its boundary ∂bu → JΦK for each u. Moreover,
still by definition of ∂c, those maps αu1 , αu2 (with u1 ̸= u2) must coincide when restricted along the legs
p1, p2 of the associated pullback. According to Definition 3.15, it gives the equations τu1(p1, j) = τu2(p2, j)
for j ∈ Ju1, u2 . Hence the type τ = (c, (tu)u∈F (c)) is well formed in the context Φ. Now, by Definition 3.16
and Lemma 3.18, JτKΦ = α and τ as described above was the only possible type up to ≡.

Lemma 3.23

Let Φ be a context and Ψ = (Φ, x : τ) obtained by CTX-EXT. Then JΨK is the following pushout,
where π : Ψ → Φ is the canonical substitution:

∂c JΦK

c JΨK

JτKΦ

JπK

x

⌟

Proof. The commutatitvity of the square above is by definition of JΨK. Let Z be a presheaf over C and
α : JΦK → Z, z ∈ Zc such that the following square commutes:

∂c JΦK

c Z

τ

α

z

If α and z factor through some β : JΨK → Z, then β is completely defined as a function by

• β(t) = α(t) if t = p∗y for some p ∈ C− and y ∈ FV(Φ).

• β(p∗x) = p∗z for (p : – → c) ∈ C−.

Now, we check that β is well-defined as a natural transformation.

• If t ∈ JΦKb and (f : – → b) ∈ C, β(f ∗t) = α(f ∗t) = f ∗α(t) = f ∗β(t).

• If t = x and (f : – → c) ∈ C, such that f = f+ ◦ f− with f+ ∈ C+ and f− ∈ C−, then β(f ∗x) =
β(f ∗− f ∗+x)

– Either f+ = id, hence f− = f and β(f ∗x) = f ∗β(x) by definition

– Or f+ ̸= id, hence f ∗− f ∗+x ∈ JΦK and β(f ∗− f ∗+x) = α(f ∗− f ∗+x) = f ∗−α(f ∗+x). Then α(f ∗+x) = f ∗+z =
f ∗+β(x) because the above square is commutative, whence β(f ∗x) = f ∗β(x).

16

• If t = p∗x for some p ∈ C−, then the previous point shows that for any f , β(f ∗p∗x) = f ∗p∗β(x) =
f ∗β(p∗x), whence β(f ∗t) = f ∗β(t).

This proves the naturality condition, hence it show that JΨK satisfies the universal property of the pushout.

Theorem 3.24

J–K is an equivalence of categories.

Proof. We need to check that J–K is fully faithfull and essentially surjective. We fix two contexts Φ and Ψ of
PRETTY.

• faithfullness. Let φ : JΨK → JΦK be a natural transformation. Suppose φ = JαK for some substitution
α. Then α must be of the form ⟨x 7→ φ(x)⟩x∈FV(Ψ) (which is well-defined, up to ≡), whence the
faithfullness.

• fullness. Let φ : JΨK → JΦK be a natural transformation and let α = ⟨x 7→ φ(x)⟩x∈FV(Ψ). For any
t ∈ JΨKc, t is of the form f ∗x for some f ∈ C−. By naturality, φ(t) = φ(JΦK(f)(x)) = JΦK(f)(φ(x)) =
f ∗φ(x). Hence φ = JαK.

• essential surjectivity. Let X ∈ Ĉ f . According to Lemma 1.28, X admits a finite number of generators xi
(1 ≤ i ≤ n). We proceed by induction on n.

– Suppose n = 0, then X is the empty presheaf, and is the image of the empty context.

– Suppose n > 0. Suppose x = xn ∈ Xc is of maximal dimension. Let Y := X \ { f ∗x} f∈C− . That is,
Y is X without the degeneracies of x. Since C is eleguant, we may check that Y is again a presheaf.
Moreover, the non-degenerated cells of Y are exactly the {xi}1≤i<n, hence Theorem 1.29 shows
that Y ∈ Ĉ f . There is an inclusion Y ↪→ X and a map c x→ X given by the YONEDA embedding.
We see that those two maps make X the following pushout:

∂c Y

c X

x|∂c

x

⌟

Let z : c → Z (seen as z ∈ Zc) and φ : Y → Z such that φ ◦ x|∂c = z|∂c. If, φ and z factor
through ψ : X → Z, then ψ(x) = z and ψ|Y = φ : Y → Z, so ψ is completely defined as a natural
transformation X → Z by ψ(f ∗x) = f ∗z for f ∈ C−.
We then check that ψ is natural. Let x′ ∈ X and g such that g∗x′ makes sense. Because φ is
natural, if x′ ∈ Y, we already have ψ(g∗x′) = g∗ψ(x′). For x′ = x, write g = g+ ◦ g− for some
g+ ∈ C+ and g− ∈ C−. If g = g−, ψ(g∗x) = g∗ψ(x) is by definition. Assume g+ ̸= id.

ψ(g∗x′) = ψ(g∗−g∗+x)
= g∗−ψ(g∗+x) because g∗+x ∈ Y
= g∗−g∗+ψ(x) because φ ◦ x|∂c = z|∂c
= g∗ψ(x)

Then, if x′ = f ∗x for some f ∈ C− and g ∈ C, the above property yield ψ(g∗x′) = g∗ f ∗ψ(x′) =
g∗ψ(f ∗x′) whence the result.
Now, using the induction hypothesis with Y yields a context Φ such that JΦK ≃ Y, and Lemma
3.22 gives a type τ in Φ such that JτK = x|∂c. Then Lemma 3.23 proves that X ≃ JΦ, x : τK, where
Φ, x : τ is obtained by CTX-EXT from Φ.

4 Set-valued models of PRETTY

In this section, our aim is to characterize the (set-valued) models of PRETTYC . As expected, we will see that
they corresponds precisely to presheaves over C. We start by noticing that the syntactic category of PRETTY

17

admits a structure of category with families (CwF). We refer the reader to [4] for a gentle introduction to this
notion.

Definition 4.1

From now on, SPRETTY will be seen as the following CwF.

• SPRETTY is the underlying category.

• For a context Φ, TyΦ = {τ | Φ ⊢ τ type is derivable}.

• For a context Φ and τ ∈ TyΦ, TmΦ
τ = {t | Φ ⊢ t : τ is derivable}.

• The values of (Ty, Tm) on substitutions is given by the action of substitutions on types and
terms.

• The specified terminal object of SPRETTY is the empty context ∅.

• For a context Φ and τ ∈ TyΦ, the context comprehension operation is given by:

– The object (Φ, a : τ) obtained by the rule ctx-EXT.

– The substitution π = ⟨x 7→ x⟩x∈FV(Φ) : (Φ, a : τ) → Φ. where a is minimal in A \ FV(Φ).

– The term a ∈ Tm(Φ, a:τ)
τ found as said above.

4.2 For any object c of C, the presheaf hom(–, c) and representing c its boundary ∂c are finitely generated (c.f.
Remark 1.14). Hence, using the equivalence SPRETTY ≃ Ĉ f of Theorem 3.24, we let Φc (resp. Φ∂c) denotes a
context such that JΦcK ≃ hom(–, c) (resp. JΦ∂cK ≃ ∂c).

By definition of JK, for any object c and any (u : bu → c) ∈ F (c), the judgment

Φ∂c ⊢ e(u) : (bu, (e(v ◦ u))v∈F (bu))

is derivable, where e : homC−(–, c) → A is an encoding of every f ∈ C−(–, c) as a variable e(f) ∈ A. Then,
using the rule TYPE, the judgment

Φ∂c ⊢ σc type

holds, where σc = (c, e(u)u∈F (c)). So Φc is obtained by a context extension (using CTX-EXT) from Φ∂c. In
particular, there is an isomorphism αc and a display map πc as follows:

Φc (Φ∂c, a : σc)

Φ∂c

αc

∼

πc
ξc

such that αc, πc and ξc = αc ◦ πc are natural in c.

Lemma 4.3 : Representability of types and terms

For any object c ∈ C and context Ψ of PRETTY, the map

SPRETTY(Ψ, Φ∂c) → {τ ∈ TyΨ | τ = c}
α 7→ σc[α]

is an isomorphism, natural in Ψ. Given a type τ with τ = c, we denote the associated substitution

χτ : Ψ → Φ∂c .

We have moreover that the maps

(SPRETTY/Φ∂c) (χτ : Ψ → Φ∂c, ξc : Φc → Φ∂c) → TmΨ
τ

α 7→ e(idc)[α]

18

are also isomorphisms, natural in Ψ. Given a term t ∈ TmΨ
τ , we let χt denotes the associated substi-

tution over Φ∂c, in such a way that the following triangle commutes.

Ψ Φc

Φ∂c

ξc

χt

χτ

Proof. The first point is the reflection of Lemma 3.22 along the equivalence SPRETTY ≃ Ĉop
f of Theorem 3.24.

The second is similarly the reflection of the point (i) of Lemma 3.18.

4.4 Using Lemma 4.3, we may see the interpretation functor J–K : SPRETTY → Ĉop
f as follows. The func-

tor Φ• : Cop → SPRETTY allows us to consider a nerve functor N : SPRETTY → Ĉop given by N(Ψ)c =
SPRETTY(Ψ, Φc). Under the correspondance of Lemma 4.3, this functor coincides with J–K on the contexts.
Moreover, given a substitution α : Θ → Ψ, and a term t ∈ JΨKc, the definition of χt yields χt ◦ α = χt[α].
On the other hand, JαK(t) = t[α]. So N and J–K coincides modulo the natural equivalence of Lemma 4.3.
Using this interpretation, the equivalence of Theorem 3.24 may be seen as coming from a generalised nerve
- realisation adjunction.

Lemma 4.5

Any context (Ψ, x : τ) where τ = c is obtained as a pullback, as follows:

(Ψ, x : τ) Φc

Ψ Φ∂c

ξc

χτ

⌟

Proof. This is a direct consequence of Lemma 4.3 and the comprehension operation property.

Lemma 4.6

Let D be a finitely complete category, and F : Cop → D a functor. F extends uniquely to a functor
F̃ : SPRETTY → D which preserves the terminal object and the pullbacks along display maps.

Proof. First of all we show that F̃ is determined on the contexts Φ∂c for all c, notice that in the context Φ∂c,
each pair (x : τ) satisfies τ ◁ c. So we may show by induction that F(Φ∂c) is determined. Indeed, we may
construct Φ∂c = Θn as a succesion of pullbacks (using Lemma 4.5):

Θi Φbi

Θi−1 Φ∂bi

ξbi

χτi

⌟

Where Θk is the context of the first k elements of Φ∂c, and (ti : τi) with τi = bi is its k-th element. If we
assume F(Φ∂b) to be known for each b ◁ c, then Θn must be preserved as a tower of pullbacks along (maps
isomorphic to) display maps. That is, F(Φ∂c) will be caracterised universally as a tower of pullbacks along
the F(Φbi

) → F(Φ∂bi
). In particular, it caracterise the image by F of morphisms whose target is Φ∂bi

.
Now, we may prove by induction on the length of the context Ψ that F(Ψ) is also determined as a colimit

in D, and on the maps whose target is Ψ.

19

• On the empty context, this is true because F is assumed to send ∅ to the empty set.

• Let (Ψ, x : τ) be obtained by ctx-EXT. Then using Lemma 4.5, we have a pullback diagram in SPRETTY:

(Ψ, x : τ) Φc

Ψ Φ∂c

ξc

χτ

⌟

And since ξc is (isomorphic to) a display map, F must preserve this pullback. So F((Ψ, x : τ)) is
defined as a pullback in D, which ensure the desired property.

Now, we may check the functoriality of F. For every context Θ, F(Θ) has been defined inductively as a
pullback of some ξc. We will ensure the functoriality of F on maps whose target is Θ by induction on this
process.

• Suppose Θ = ∅, then F(∅) = ∅ is terminal so the result is clear.

• Suppose that Θ = (Ψ, x : τ), then it a pullback of ξc for c = τ along χτ , as depicted above. Our
inductive hypothesis is that F is functorial on maps whose target are Φc or Ψ. A map α : Θ′ → (Ψ, x :
τ) yields two structural maps α1 : Θ′ → Φc and α2 : Θ′ → Ψ. By definition of F, F(α) is obtained
by universal property of F(Θ), applied to the structural maps F(α1) and F(α2). Let β : Θ′′ → Θ′

be a substitution. Then similarly, γ = α ◦ β yield two maps γ1 : Θ′′ → Φc and γ2 : Θ′′ → Ψ, and
F(γ) is defined by the universal property of F(Θ), applied to the maps F(γ1) and F(γ2). By induction
hypothesis, F(γ1) = F(α1) ◦ F(β) and F(γ2) = F(α2) ◦ F(β). Hence, F(γ) = F(α) ◦ F(β) by the
universal property of F(Θ). Hence, F preserves compositions. By definition of F, it also preserves
identities.

Finally, we shall check that F preserves the terminal object and the pullbacks along display maps. The first
point is by definition of F. As to the second one, consider a pullback along a display map in SPRETTY, it has
the following form:

(Ψ, x : τ[α]) (Φ, a : τ)

Ψ Φ

π

⟨α◦π′ , a 7→x⟩

π′

α

⌟

Lemma 4.5 gives us two other pullback squares, as follows:

(Ψ, x : τ[α]) (Φ, a : τ) Φc

Ψ Φ Φ∂c

π

⟨α◦π′ , a 7→x⟩

π′

α

⌟

χa

χτ

ξc

⌟

χx

χτ[α]

which are the rightmost and the outermost ones. Since both must be preserved by definition of F, the
leftmost one must also be preserved, by the pullback pasting lemma.

Theorem 4.7

There is an equivalence of categories Mod(SPRETTY) ≃ Ĉ, by restriction along Cop ↪→ SPRETTY.

Proof. It is given directly by Lemma 4.6.

20

5 Some instances of PRETTY

The Globular Theory PRETTYG

For this exemple, we consider the reflexive category of globes G. We have the coverings defined in Exemple
1.8, and use the presentation P([n + 1], [n]) = {ιn} With no further relations.
Note that we have ι ◦ σ = ι ◦ τ = id when those expressions makes sense, so this choice of presentation
satisfies the assumptions of 3.1.
5.1 Syntax. We may describe the syntax for terms and types as follows:

tm ::= x (x ∈ A)
| ι∗tm

tp ::= ∗
| s → t (s, t ∈ tm)

We also write more conveniently idk
t for ι∗kt, yielding tm = {idk

x}x∈A, k∈N

5.2 Type introduction. The rule TYPE splits into the two following ones:

Φ ctx

Φ ⊢ ∗ type
TYPE-∗

Φ ctx Φ ⊢ s : τ Φ ⊢ t : τ

Φ ⊢ s → t type
TYPE-→

type introduction rules

5.3 Degeneracies. The rule DEGE boils down to:

Φ ⊢ t : τ

Φ ⊢ idt : t → t
DEGE

degeneracy rule

5.4 Globular Type Theory. Upon forgeting the degeneracies, one directly recovers the Globular Type Theory
defined by BENJAMIN, FINSTER and MIMRAM in [2].

The Simplicial Theory PRETTY∆

We consider now the category of simplices ∆. We have the coverings defined in Exemple 1.24, and use the
presentation P([n + 1], [n]) = {σi}0≤i≤n With relations (σj ◦ σi)P(σi ◦ σj+1) when i ≤ j.
We have the identities

σj ◦ δi =


δi ◦ σj−1 if i < j
id if i ∈ {j, j + 1}
δi−1 ◦ σj if j < i + 1

when those expressions makes sense, so this choice of presentation satisfies the assumptions of 3.1.
5.5 Syntax. We may describe the syntax for terms and types as follows:

tm ::= x (x ∈ A)
| σ∗

i tm (i ∈ N)

tp ::= ∗
| ∆[s0, · · · , sn] (n ≥ 1, si ∈ tm)

We write more conveniently t.i for σ∗
i t, yielding tm = {x.i1.· · · .in}x∈A, n∈N, ik∈N. We also write s → t for the

type ∆[s, t].

5.6 Type introduction. The rule TYPE splits into the three following ones:

21

Φ ctx

Φ ⊢ ∗ type
TYPE-∗

Φ ctx Φ ⊢ s : τ Φ ⊢ t : τ

Φ ⊢ s → t type
TYPE-→

∧
0≤i≤n+1

Φ ⊢ ti : ∆[si
0, · · · , si

n]

∧
0≤i<j≤n+1

si
j−1 = sj

i

Φ ⊢ ∆[t0, · · · , tn] type
TYPE-∆ (n ≥ 2)

type introduction rules

5.7 Degeneracies. The rule DEGE splits into the following ones:

Φ ⊢ t : ∗
Φ ⊢ t.0 : t → t

DEGE-∗
Φ ⊢ t : ∆[s0, · · · , sn]

Φ ⊢ t.k : ∆[s0.(k−1), · · · , sk−1.(k−1), t, t, sk+1.k, · · · , sn .k]
DEGE-∆ (0 ≤ k ≤ n)

degeneracy rules

The equality s ≡ t of two terms may be decided quickly by using the following argument:

Lemma 5.8 : Normal form of terms

Each term t ∈ tm may be written as x.i1.· · · .in for a unique x, n and ik’s such that i1 ≤ · · · ≤ in.

The Cubical Theory PRETTY⧠

We finally consider the exemple of the category of cubes ⧠. We have the coverings defined in Exemple 1.25,
and use the presentation P([n + 1], [n]) = {σi}0≤i≤n With relations (σj ◦ σi)P(σi ◦ σj+1) when i ≤ j.
We have the identities

σj ◦ δi, ε =


δi, ε ◦ σj−1 if i < j
id if i = j
δi−1, ε ◦ σj if i > j

when those expressions makes sense, so this choice of presentation satisfies the assumptions of 3.1.
5.9 Syntax. We may describe the syntax for terms and types as follows:

tm ::= x (x ∈ A)
| σ∗

i tm (i ∈ N)

tp ::= □[(s0
1, s1

1), , · · · , (s0
n , s1

n)]
(n ≥ 0, sε

i ∈ tm)

We write more conveniently t.i for σ∗
i t, yielding tm = {x.i1.· · · .in}x∈A, n∈N, ik∈N.

We also write ∗ for the type □[].

5.10 Type introduction. The rule TYPE splits into the two following ones:

∧
1≤i≤n
0≤ε≤1

Φ ⊢ tε
i : □

[(sε, i, 0
1 , sε, i, 1

1), · · · , (sε, i, 0
n , sε, i, 1

n)]

∧
1≤i<j≤n
0≤ε, η≤1

sε, i, η
j−1 = sη, j, ε

i

Φ ⊢ □[(s0
1, s1

1), · · · , (t0
n , t1

n)]
type

TYPE-□ (n ≥ 0)

type introduction rules

5.11 Degeneracies. The rule DEGE may be written as follows:

22

Φ ⊢ t : □[(s0
1, s1

1), · · · , (s0
n , s1

n)]

Φ ⊢ t.k : □[(s0
1.(k−1), s1

1.(k−1)), · · · , (s0
k−1.(k−1), s1

k−1.(k−1)), (t, t), (s0
k+1.k, s1

k+1.k), · · · , (s0
n , s1

n).k]
DEGE (1 ≤ k ≤ n)

degeneracy rules

The equality s ≡ t of two terms may be decided quickly by using the following argument:

Lemma 5.12 : Normal form of terms

Each term t ∈ tm may be written as x.i1.· · · .in for a unique x, n and ik’s such that i1 ≤ · · · ≤ in.

References

[1] https://ncatlab.org/nlab/show/HomePage.

[2] T. BENJAMIN, E. FINSTER, AND S. MIMRAM, Globular weak ω-categories as models of a type theory, 2024.
https://arxiv.org/abs/2106.04475.

[3] S. E. CRANS, Pasting schemes for the monoidal biclosed structure on ω-Cat, 1995.

[4] M. HOFMANN, Syntax and Semantics of Dependent Types, Publications of the Newton Institute, Cambridge
University Press, 1997, p. 79–130.

[5] E. RIEHL AND M. SHULMAN, A type theory for synthetic ∞-categories, 2023. https://arxiv.org/abs/
1705.07442.

23

https://ncatlab.org/nlab/show/HomePage
https://arxiv.org/abs/2106.04475
https://arxiv.org/abs/1705.07442
https://arxiv.org/abs/1705.07442

	Some category-theoretic definitions and results
	Presheaves over direct categories
	Presheaves over Reedy categories
	Set-valued models of PreTTy
	Some instances of PreTTy

