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Abstract

Using the Spatial Type Theory introduced by M. SHULMAN in [29], we present a type theory modeled
by the co-topos of presheaves over the category ©. In particular, we may carve out a type of weak (oo, w)-
categories by defining suitable SEGAL and completeness conditions, as defined by C. REZK in [24]. In many
regards the approach we have taken follows the ideas introduced by E. RIEHL and M. SHULMAN in [25]. In
this paper we lay down those definitions and prove some very simple properties, as a proof of concept for
further development.

Contents

1 Introduction

2 Main Ideas

3 The Category ©

4 The Type Theory

5 (o0, w)-Categories

6 Some Results

7 The Subuniverse of Codiscrete Types
8 (oo, n)-Categories

9 Directed Homotopy

10 Perspectives and Conclusion

A Semantics of CellTT

11

14

21

23

25

27

30



1 Introduction

1.1 Homotopy and type theory. In logic and type theory, one of the major advances of the last two
decades has been the establishment of a so-called "homotopy" type theory (abbreviated HoTT), whose types
are naturally interpreted as spaces up to homotopy, that is co-groupoids [30]. These objects have been
conceived and studied in algebraic topology for over half a century, [15, 16, 23], and still resist simple
axiomatic description. The advantage of such a theory is that it allows an external and synthetic approach
to these spaces up to homotopy: we have a language whose objects behave like co-groupoids [31], we can
talk about them and establish theorems on them, without ever having to define them precisely. Another
inherent advantage of type theory is its computational content. Mathematical functions are replaced by
programs that systematically calculate. We can also use computers to ensure that our reasoning is correct
(this is the idea behind proof assistants as ROCQ, AGDA, LEAN efc.).

Finally, another major interest of this new theory, anticipated by VOEVODSKY in the 2000s [32], was its
application to the formalization of mathematics in general. Indeed, it is for example possible to think of a set
as a discrete space, whose homotopy is concentrated in degree 0. Or of a logical proposition as a space whose
homotopy is trivial in a suitable sense. Generally speaking, certain recent developments in mathematics or
theoretical physics have shown the importance of so-called "higher" structures, or even "up to homotopy."
Such as the n-categories of cobordisms in field theory [3, 4], or the stacks used in algebraic geometry [10].
For instance, it is possible to formalize naturally homotopic algebra in HoTT, such as co-groups [7].

Today, HoTT has become a language of mathematical discussion. Similar to set theory, but distinguished
by its constructive flavor and its ability to formulate synthetically theorems from homotopy theory.

1.2 A Directed Homotopy Type Theory. More generally than co-groupoids, we would like to study
(00, w)-categories, which are weak categories whose morphisms do not necessarily have an inverse. On
the one hand, these structures appear very naturally in mathematics (for example, co-groupoids form a oco-
category), and we would also like to be able to study them in a synthetic and mechanized way. On the other
hand, recent developments in computer science related to the study of the semantics of concurrent programs
have given rise to the notion of directed spaces [9], which naturally give rise to co-categories. Indeed, directed
paths in these spaces correspond to program executions that respect the direction of time.

Furthermore, morphisms correspond to equalities, and the theory of rewriting in computer science has
shown that it is often relevant to orient these equalities (if two elements represent the same class, one can
often find one that is "better" according to certain criteria), in order to access new computational tools and
calculate invariants or demonstrate consistency properties.

Finally, while co-groupoids are complicated to manipulate, we know of models that remain combinatori-
ally accessible (for example, simplicial models based on KAN complexes). The currently known definitions
of higher categories are extremely difficult to manipulate; thus, the introduction of new computational tools
to master their combinatorics and verify the associated constructions would be very useful.

While the idea of a directed variant of type theory has been present almost since the beginning of ho-
motopy type theory, current proposals are not entirely satisfactory. The most advanced proposal is that of
RIEHL and SHULMAN [25]. Based on an extension of MARTIN-LOF type theory (MLTT), inspired by cubical
models of homotopy type theory, and guided by the model of SEGAL-spaces. It has allowed the formaliza-
tion of non-trivial results but is limited to 1-categories (all n-morphisms of which are invertible for n > 2).
Another approach has been proposed by NORTH [20] which in some sense is orthogonal to the direction
explored by Simplicial Type Theory and the work presented here.

1.3 Differences with the (co, 1)-case. In Simplicial Type Theory, hom types are discrete, in the sense that
they are co-groupoids. This occurs because Rezk-types are “only” (co, 1)-categories. While in the (oo, w)-
setting, hom types of (co, w)-categories should remain (in general, non-discrete) (oo, w)-categories. This
crucial difference allows the authors of STT to define hom types as usual mapping spaces

hom 4 (x, y) = Z fO)=xxf(1)=y

fiI—=A

where I - a directed interval - is interpreted as the YONEDA embedding of the 1-simplex (seen as an ob-
ject of A, in the (oo, 1)-case, and as an object of ©, in the (oo, w)-case). Howether, when working with
(00, w)-categories, this mapping type behaves differently to the hom type. A 2-cell in A should be a map
I — (I — A) with boundary conditions, which by Curryfication, should be the same as a map I> — A with



boundary conditions. Whereas I? is only a 1-categorical object. Hence, we must find a way to define the
hom type differently.

1.4 Introducing b. One way to do so is to work with an idempotent modality which is comonadic, for
instance building upon Crisp Type Theory, as introduced by M. SHULMAN in [29]. Here, our flat modality
comes from an adjunction :

4

evy=(F—F(x))

where S is the (oo, 1)-categeory of spaces, and §(X) is the constant functor equal to X. We then have an
idempotent comonad b = d o ev, : [@°P, S| — [@°P, S]. This setting falls in the broader one of local toposes
which should be model of the spatial fragment of cohesive HoTT according to M. SHULMAN (see Remark
1.2:in [29]).

This modality allows us to speak about the types of “points” X, of a type X by seing it as a discrete (i.e.
constant) presheaf (i.e. type). When working with a type which is an (oo, w)-category, it should computes
its core.

1.5 Spatial Type Theory. Recently, M. SHULMAN has introduced a type theory extending Homotopy Type
Theory by adjoining two adjunct modalities b - § [29]. This setting gives a language suitable for talking
about any local co-topos. For an exposition of this notion in the case of 1-categories, one may refer to [13].
The oo-categorical notion may be found at [1].

2 Main Ideas

We start by presenting the outline of the paper and give an overview of the main ideas and constructions
that will be introduced in the following sections.

2.1 The category ®. In Section 3, we start by presenting the category of pasting schemes ®, which may
be thought as a full subcategory of strict w-categories. This category will play a central role in our work,
as it is the category of shapes on which our model of (oo, w)-categories is built. Then, we also give a com-
binatorial description of the objects and morphisms of ®, which will be usefull for formalizing it in Section 4.

2.2 The type theory. We then describe our type theory in Section 4. Informally, this will be an extension of
HoTT with an idempotent comodality b and a right adjoint § - b (which form the spatial fragment of cohesive
homotopy type theory [29]), Together with seven postulates. It is intended to have a semantic in the model
category sPsh(®), that is, in the higher category of presheaves over ®, in which one may define (oo, w)-
categories. So our main idea is to assume every type to look like a presheaf over an internalization of the
category ©.

We sketch the seven postulates we will consider:

* (YONEDA embedding) There is a wild functor & : @ — U, where @ is the aforementioned internalization
of the category © in type theory. This functor is assumed to be crisply fully faithfull, and we think of
it as a YONEDA embedding.

* (cellular cohesion) There is a notion of b-discreteness for a type (i.e. b-modal types). And there is a notion
of cellular discreteness for types, which mean this type have all its cells degenerated. We postulate the
two notions to coincide. This axioms fits in the broader setting of punctual cohesion defined in section
8 of [29].

* (equivalences are objectwise) Using our YONEDA embedding, each crisp type A now comes with a (dis-
crete) type of P-cells Ap for each P, and every map f : A — B induces maps fp : Ap — Bp on P-cells.
We ask for f to be an equivalence whenever all the fp are.



e (suspension) We postulate a pushout preserving wild functor $' : U — Ua. from types to bipointed
types, which we call the suspension. It should be thought as a directed version of the suspension
operation introduced in [30].

¢ (hom types) We postulate the existence of hom-types as a right adjoint to the suspension operation
previously postulated.

* (connectedness of representables) We assume the (—)p : U — U operation to preserves pushouts. This
is motivated by the objectwiseness of colimits in presheaves categories, or by connectedness of repre-
sentables in a presheaf category.

* (coverage) We assume that every element x : A in a crisp type A : U lie in the image of a P-cell
c:b(&(P) = A) for some P.

2.3 (0o, w)-categories. In Section 5 we will define the key notions of Segalness and Completeness of a
type, which will yield our definition of (internal) (oo, w)-categories. That is, we will introduce a proposition
which will carve the type of higher categories as a subtype of the universe U/. It will be given by those types
which are both SEGAL and complete, in a sense generalizing that introduced in [25].

2.4 Some results. In Section 6, we will present a selection of usefull facts about higher categories as defined
in Section 5 and more generally about the type theory introduced in Section 4. For instance, it will be shown
that the homotopy level may be computed objectwise, or that infinity categories are preserved by sums and
pullbacks.

2.5 The subuniverse of codiscrete types. In Section 7, we explain how the § modality of Spatial Type
Theory (the right adjoint to b) behaves in our type theory, and gives a caracterization of crisp f-modal types.
Namely, they will be those types which see the representables as their core co-groupoid. In particular it
implies that all their hom-types are contractibles.

2.6 (oo, n)-category. We move on to a quick description of (oo, 1)-categories for any 0 < n < oo in Section
8. We will give several caracterizations of this notions, together with basic facts about them as a sanity check.

2.7 Directed homotopy. We sketch in Section 9 some basics of directed homotopy theory that one could
develop in our formalism. We give a definition of a reduced directed suspension ¥ as an example of a
localization type, and propose an inductive definition of direct_e)d n-spheres. As a proof of concept for further
development, we show that there is a directed counterpart (2 4 X to the usual loopspace-suspension ad-
junction.

2.8 Semantics. As a motivation for the work we have provided in this article, we sketch a semantic of

our type theory in the co-topos of presheaves over ® as an appendix. It is not intended to be a fully precise
description, but rather an informal justification for our postulates.

3 The Category ©

3.1 The category O (or cell-category) has been first introduced by A. JOYAL in [14] as a shape category suit-
able for defining weak (oo, w)-categories. It was then used and studied by various authors for this same
purpose, and especially showing properties of its category of presheaves [6, 8].

3.2 Pasting schemes. Pasting schemes constitute the objects of the category ®. They consist of pastings of
formal globes, as depicted below:

IR L




Formally, let G denotes the category of formal globes:

ap (%] (%}
Go G1 G2

T T ©

whose objects are the (G;);cn and morphisms the 0;, 7; : G; — Gj.1 subjects to the relations coo = To0
and o o T = T o T. Then the pasting schemes are the diagrams of the following shape in G:

where we have denoted ¢ = 0o ---ocand 7 = To--- o7, ommiting the indices for readability. Hence,
pasting schemes are also called globular sums and may be intuitively thought as the colimits of those dia-
grams in the category of globular sets G. For a further account of thoses objects and their application to
higher categories, one should check the work D. ARA [2]. In fact, any such diagram will induce a unique
strict w-category, and this embedding allow us to define their morphisms as the morphisms of the strict
w-categories they generate. See the work of C. BERGER [5] for more details on this approach.

The category ©, combinatorially

For our purpose, we will use a more direct and combinatorial description of the category ©, suitable for a
type-theoretic reformulation.

Definition 3.3 : Pasting schemes

The pasting schemes are the objects of the category ©, they are inductively defined as follows:
A pasting scheme P is a list of pasting schemes P = [Py, - - -, Py].

3.4 As this very concise definition may be a bit puzzling, we provide some pictures of pasting schemes,
labelled by their name according to Definition 3.3.

[ e — o > @ —— @

[{[1], % [ #]

Using this description, one should think of the pasting scheme P = [Py, - - -, P,] as the glueing of the sus-
pensions of the pasting schemes Py, - - -, P, along their endpoints.

3.5 We may now define combinatorially the maps between two pasting schemes. We first introduce the
notion of dual map. We use the standard notation [n] = {0, ---, n} ([n — 1] = @) equiped with the linear
order 0 <1 < ... < n. Wealso denote (n) = {1, ---, n} and (n)y4 = {—oco} + (n) + {+oco} with the
intuitive linear order.



Definition 3.6 : Dual map <

Let f : [n] — [m] be a non-decreasing map. Its dual map f" : (m) — (n)4 4 is defined by

—oo if £(0) > k
£ (k) ={ i Ef(i-1) <k < f()

+o0 iff(n) <k

Note that f extend canonically as a map f" : (m)4++ — (n)++,and as such (-)" is functorial.

The following sketch should yield intuition for this construction:
—00 ° 1 ° 2 ° 3 ° +00 3]
|
f
!
. 1 ° 5 . 3 ° 1 ° [4]
where we we have depicted the map f in blue and its dual map f" in squiggly purple arrows.
We now give the inductive definition of morphisms between pasting schemes.

Definition 3.7 : Morphism of pasting schemes N

LetP =[P, -+, PyJand Q = [Qq, - -+, Q] be two pasting schemes. A morphism P — Q between
them is the following data.

* A non-decreasing map f : [n] — [m].
* Foreach k € (m) such that f" (k) € (1), a morphism & : Ppv () — Q.
We pack this data as a pair (f, 9).

This situation is depicted below:
) i ) f2 ) i . 3]
!
‘o e e e

Where the purple squiggly arrows are now morphisms of pasting schemes.

3.8 Composition and identities. The composition of two morphisms (f, §) and (g, ) is defined as (g o f, y 0 9)
where (7 0 6) == 7Y 0 dgv (x). The identity morphism [Py, -+, Ps] — [Py, - -+, Py] is defined inductively as

(id[n]r (idPi)ie(m)-

4 The Type Theory

The base type system we are considering is Crisp Type Theory, with the b-modality introduced by M. SHUL-
MAN in [29]. We introduce the notation [],..x ®(x) (resp. ¥r..x D(x)) for [T,.x D(x;,) (resp. Yp.x D(x;,)). We
then add axioms which holds in the ®@-spaces model.

The type of pasting schemes

We first define the type of pasting schemes and expose some basic constructions involving it.



Definition 4.1 : Pasting schemes, suspension N

There is an inductive type PS of pasting schemes whose sole constructor is:
cons : PSList — PS

We write more concisely [Py, - - -, Py] for the type cons [Py, - - -, P;]. We let $ denote the suspension
operation

Definition 4.2 : Morphisms P —ps Q

Let P, Q be two pasting schemes, there is a type of morphisms P —pg Q between them, which is
also defined inductively, following Definition 3.7. its objects are dependent pairs (f, ) : P —ps Q,
as in the definition loc.cit.

Following paragraph 3.8, there is a composition and identities:

—o-: J] (Q—=psR)— (P—psQ)— (P—psR)
P,Q,R : PS

id: [[ P—psP
P:PS

Theorem 4.3 : The category © |

The types PS and P —ps Q for P, Q : PS have a decidable equality, so both are sets according to
HEDBERG's theorem (see thm. 7.2.5 in [30]).

Moreover, pasting schemes and their morphisms with o and id form a category in the sense of Defi-
nition 9.1.6 of the HoTT book [30].

\

4.4 Some notations. We let x = [|] denote the terminal pasting scheme (it is!). Then [n] denotes the list
[*, %, -+, %] of length n, and O, = $"* is the list [[- - - [] - - - |] containing n + 1 pairs of brackets.
Remark also that any pasting scheme P = [Py, - - -, P,] comes equiped with a left and right endpoints

leftp = (0, _) : x —pg P rightp = (n, _) : * —pg P

Definition 4.5 : Suspension of morphisms

For o = (f, §) : P —ps Q a morphism of pasting schemes, there is a suspended morphism
$o := (idpy), (o))

This construction is functorial, and any suspended map preserves the endpoints. As such we say it
is bipointed.

o P .o 1]
1k
*—=a 1]



Definition 4.6 : Inclusion and retraction morphisms

Let P = [Py, - -+, P,] be a pasting scheme and 1 < i < n. There are inclusion C; : $P; —ps P and
retraction 7t; : P —pg $P; morphisms defined as

_ . . — i ifx <i .
Ci:= (le—i—x, (Idpi)) T = (XH{ P11 ifx > ,(Idpi)>

One may check that the retraction 7; is indeed a retraction of the inclusion C;.

Here are illustrations of the inclusion morphism C; and the retraction morphism 7;:

e — o o — > @ ————— > e — > @ ————- > e — > @
‘/ éldp"/ ‘/ éldp"/
*o — > 0 ————- > e — > @ ————- >e —— @ o — o

r—[ Definition 4.7 : Dimension }

The dimension dim(P) of a pasting scheme P : PS is defined inductively as follows.
* When P = x is the empty list: dim(P) = 0.
e WhenP = [Py, - - -, P;] withn > 0, dim(P) = max{dim(P;) }1<j<y.

Definition 4.8 : Source and target morphisms

We define inductively on P : PS and k € IN, its k-boundary okP : PS, with two morphisms src’l‘,, tgtll‘, :
akP —PS P.

e When k =0, 3P := %, with src(l), := leftp and tgt% = rightp.
e When P = [Py, - -+, P,] withk > 0, we let

ofp:= [pF-1p,, ..., ok 1P,

srck .= (id[n], (src’f)i_l)i) and tgth = (id[n], (tgtll‘ji_l)i)

When dim(P) > 0, we denote dP (resp. srcp, tgtp) the pasting scheme 94™(P)=1 (resp. the morphisms
dim(P)—1 dim(P)—1
srcp ,tgtp ).

\

4.9 This construction is illustrated below.

e — e ° olp

TN
@ LN
RS L

The axioms of CellTT

We now introduce the axioms we need to reproduce constructions from higher category theory.

o]



Postulate 1: YONEDA embedding

For each pasting scheme P, we postulate a fully-faithful wild functor X : ® — U. That is:
e Foreach P : PS, a type &(P) : U.
e Foreacho: P —pg Q, a function K(o) : X(P) — X(Q).
e For each P : PS, an identity &(idp) = idp).

* For each composable morphisms ¢ : P —pg Q and 7 : Q —ps R, an identity
K(too) =X(1) 0 k(o).

e Such that for all P, Q : PS, the map bk : b(P —pg Q) — b(L(P) = &(Q)) is an equivalence.

We also refer to &(P) as the fibrant realization of P, as opposed to the non-fibrant or cellular realization
that will be introduced later.

L

4.10 Welet I := X (A!) = X(0O;) and D, := £ (Op). Recall from [29] that a type A is called b-discrete iff the
counit A — A is an equivalence (which boils down to asking it to admit a section)

r—[ Postulate 2 : Celular cohesion } ,

A type A is said to be cellularly-discrete iff for all P : PS, the canonical map A — (& (P) — A) is an
equivalence. If A :: U is a crisp type, we postulate both notions of discreteness to be the same. That
is:

is-b-discrete(A) < is-cellularly-discrete(A)

From now how, we refer to both notions as discreteness, and write is-discrete(A) for this property.

\

4.11 For any crisp type A :: U, welet Ap :=b(k(P) = A)and A, := Ap, whenn :IN. Anymap f : A — B
induces a map fp : Ap — Bp. Then we assume the following.

Postulate 3 : Equivalences are objectwise

A crisp map f :: A — B is an equivalence iff all the fp are. That is:

(H is-equiv(fp)> — is-equiv(f)

P::PS

\

4.12 As a corollary of Postulate 3, any object is contractible iff it is objectwise. Especially, k() ~ 1 is
contractible. This implies that any fibrant realisation J(P) is equiped with a left and a right endpoint

left := X(left) : 1 >~ X(%) — X(P) and right := X(right) : 1 ~ X(x) — KX(P)

Moreover, this makes our Postulate 2 fit into the setting of punctual cohesion as introduced in paragraph 8.2
of [29]. Which in turn makes PS and P —pg Q discrete types according to Theorem 4.3 and the opposite
implication of Lemma 8.15 in loc.cit. (which does not require LEM to hold).

4.13 Bipointed types and maps. In the following, we write U, for the type of bipointed types Y x .4 X X X
and X —.e Y for the type of bipointed maps (preserving both endpoints) between bipointed types X and Y.

,—‘ Postulate 4 : Suspension

We assume:
e A pushout-preserving ? (crisp) wild functor $’ :: U — Uee.

e Forall P :: PS, a (crisp) intertwining map Bp :: £($P) —ree $'(&P).




Such that the canonical map 1 + Y, Xp, +1 — ($/X)p is an equivalence. We call $’ the suspension
functor, as it extends $ to all types.

"We could also assume 2-coherence to ensure that $', as a left adjoint to hom (see Postulate 5) preserves colimits (see [22]).

4.14 We unfold Postulate 4 and define precisely what is the “canonical map” mentionned above. On the
first summand, the map 1+ }; Xp + 1 picks the constant map &(P) — $'X equals to the left point of $'X.
On the last summand, it picks the map constant equal to the right point of $' X. On the middle summand, a
cell ¢ : b(K(P;) — X) is sent to the map

(X(7;) 0 Bp 0§ (c,))’

which is depicted with the following illustration:

o e e e ey, X(P)
iidpi (i)
s 5 K($P;) ~ $'K(P))
:
o $'X

In particular, when instancied at P’ = $P, the postulate implies that the intertwining map Bp itself is an
equivalence.

Postulate 5: hom types 3

We assume a crisp 1-coherent right adjoint hom to the suspension functor $' : U — Uae.

$l

TN

U £ Z/{oo

~_

hom

We denote hom 4 (x, y) its value at (A, x, ¥) :: Uee.

L

Remark 4.15
What we really mean by adjunction in Postulate 5 is that we have a (1-coherent) natural equivalence

b(A — homp(x, y)) 2 bH($'A —ee (B, x, V))

for any crisp A :: U and crisp bipointed type (B, x, y) :: Uee. Thus, this should be thought as a usual
co-categorical adjunction, while asking for an equivalence

(A — homp(x,y)) = ($A —ee (B, x, 1))

would yield an enriched adjunction (enriched in presheaves over ®), which would be wrong semantically.
We denote the unit of this adjunction merid : A — homg 4 (left, right). For two points x, y : bB, we will also
write homg(x, y) for homg(x,, y,), thus viewing homp as a function

homp : bB X bB — U

10



Postulate 6 : Connectedness of representables <

For any P : PS, the functor (—)p is required to preserve sums.

\.

,—‘ Postulate 7: Coverage

For a crisp type A :: U, the map

Y )Y xP—A

P::PSc:Ap

is an effective epimorphisme (i.e. its fibers are inhabited.)

\. J

4.16 This last axiom is motivated by Corollary 5.1.6.11 from the work of J. LURIE [19]. Roughly, it is a way
to enforce every type to be a colimit of representables (of the form X(P)).

5 (o0, w)-Categories

5.1 We now expose some constructions we are able to make inside the type theory we have defined in
Section 4. We first introduce the notion of cellular (or non-fibrant) realization of a pasting scheme. Then
we will be able to formulate the definition of SEGAL-type, the completeness condition and finally (co, w)-
categories. In many regards, our work follows the ideas gathered in F. LOUBATONs thesis [17].

r—[ Definition 5.2 : Cellular realization }

LetP = [Py, -- -, P,] : PS be a pasting scheme. We define inductively its cellular realization (P) as the
colimt of the following diagram:

1 1 e
&t\t V wt left .-~ . _right V
e Sy
$'(P1) $'(P2)

$' (Pn)

1

Note that assuming the existence of pushouts in our type theory (for instance, using a Higher Induc-
tive Type) suffices to compute iteratively this colimit.

\

5.3 Canonical map (P) — X(P). We may define inductively a canonical map canp : (P) — X(P). Indeed,
suppose P = [Py, ---, P;] and having already defined maps canp, for all P;’'s. Then we may form the
following cocone:

1 \ / 1 \ / 1 1 \ / 1
$(P1) $(P) e $(Pn)
$Canp1‘/ $canp2l lﬂ?cam’n
$&P $LP> . $&P,
dl | |
£$P; £$P, e £$P,
Xg,j
*Cp, P FCp,

Thus, by the universal property of (P), it factors as the desired canonical map canp : (P) — X(P).

11



Definition 5.4 : SEGAL-type <

A crisp type A :: U is said to be a SEGAL-type whenever for all P :: PS, the canonical map yield an

equivalence
b(&(P) = A) = b((P) — A)

We write is-SEGAL(A) the associated proposition.

Exemple 5.5
We will see later on that any discrete type (which should be thought as a space, or an co-groupoid) is a
SEGAL-type.

5.6 Cells, source and target. In the following, we call P-cell (of A) an element of Ap for some A :: U and
P :: PS. We also call n-cell a O,-cell. When c is a P-cell of A, we let its source be (c, o k(srcp))” : Ayp, and its
target (c, o X(tgtp))” : Azp. We denote them respectively src(c) and tgt(c). Notice that for any n-cell b of A,
there is an identity (n + 1)-cell id, on b, defined by precomposing b with the n-th suspension of the terminal
map I — 1. By construction, it satisfies src(id,) = tgt(id,) = b. Remark also thatifc: Apand f :: A — B,

then src(f.c) = fi(src(c)) and tgt(fic) = fi(tgt(c)).

5.7 gluing of two cells. Letn € IN. There is a pasting scheme [2] = [«, *] whose n-th suspension $"[2] may
be thought as the formal glueing of two (1 + 1)-cells along their n-boundary. For instance, the following
illustrate the pasting scheme $2[2].

Notice that there is a morphism

00 ., .
comp 1= $"( 1 :2 , (id,, |d*)> : Dyt — $"[2]

such that src o comp = src and tgt o comp = tgt. By assumption, the suspension operation preserves pushout
(see 4). And as such, we have the following description of ($"[2]).

1 Dn
($"2]) = $" colim rigy ﬁt — colim NG
I I Dn+l D

Thus, given a crisp type A :: U, any pairs of (n + 1)-cells ¢, d : A, such that tgt(c) = src(d) yield a map
b(($"[2]) — A) which we write (c, d).

n+1

Definition 5.8 : Codimension-1 composition of cells

Let A :: U be a crisp SEGAL-type, and let ¢, d be two (n + 1)-cells of A such that tgt(c) = src(d).
Then by the SEGAL property, the map (¢, d) : b(($"[2]) — A) extends uniquely to a $"[2]-cell of A,
whose pullback by comp is a (1 4 1)-cell that we denote c %, d. We call ¢ *,, d the n-composite of the
(n 4+ 1)-cells c and 4.

. J

5.9 Inthefollowing, whena, b: A, aretwon-cellsof A, weleta —4 b:=Y .4, ,, (src(c) =a) x (tgt(c) = b).
Note that if this type is inhabited and n > 0 then there are identities src(a) = src(b) and tgt(a) = tgt(b).
Definition 5.8 above induces a (crisp) map (a —4 b) x (b =4 ¢) = (a — 4 ¢) when A is a crisp SEGAL-type.

12



—[ Definition 5.10 : Invertible cell }

Let A :: U be a crisp SEGAL typeand ¢ : a4 — 4 ba (n + 1)-cell of A. The type of left-inverses of c is

linv(c) := ) dx,c=idy

d:b—a

The type of right-inverses of c is

rinv(c) :== ) cxyd=id,

d:b—a

Then we let is-inv(c) := linv(c) x rinv(c), and we define the type of invertible (n + 1)-cells of A from a
tobas

ac~abi= ) is-inv(c)

c:a— b

\

5.11 Note that for any crisp SEGAL-type A and two n-cells a, b : A, there is a canonical map (a =4, b) —
(a ~4 b) given by path induction, whose value on refl, is given by an identity id,.

,—{ Definition 5.12: (co, w)-category

Let A :: U be a crisp SEGAL type. We say that A is complete whenever the canonical maps
a =4, b— a~4 bareequivalences for all , a, b.
We also call any complete SEGAL type an (oo, w)-category and write (oo, w)-Cat their type.

Lemma 5.13: First reformulation of completeness \

For A :: U a SEGAL-type, the completeness condition of Definition 5.12 is equivalent to the following
one:

Vn, is-equiv(A, — L"ll)

where Ai”"1 = Yap:a, 4 =4 b, and the map A, — AL’“’l is a — idg.

n+ +
Proof. This is directly seen by Theorem 4.7.7 in [30]. O
Lemma 5.14 : Second reformulation of completeness N

For n : N, let E,;;1 : U be the pushout of the following diagram:

&n, ,Bn

Dn+1 + Dn+1 ES [3]

]

Dy+Dy —— E,pq

where the vertical map is on each component the n-th suspension of the terminal map I — *.
And o, = X($"a), Bn = &($"B) where a, B : [1] — [3] are given by

€(0)=0, a(l)=2 and BO)=1, B(1)=3

Then Aml ~ b(E,,1 — A) is the pullback A2 X4, Agn[3)- So a SEGAL-type A :: U is complete iff

13



for each n the following square is cartesian.

An L A$n[]

J
id, id ‘a;, B

2 2
—_
Ay id_ xid_ An+1

Proof. The first statement comes from the fact that an element of A 4[5 is equivalently three (n+ 1)-cells
s:a—ab, f:b—=4candp:c —4 d, pulling back by ay,, B, computes the compositions s *;, f and f *, p,
and pulling back along D1 + D11 — Dy, + D, computes two identity (n + 1)-cells.

The second statement follows from the observation that the map A, — AL”L is obtained as the precom-
position with the canonical map E,; 11 — Dj,. O

6 Some Results

Discrete types are (oo, w)-categories

If A :: U is a discrete crisp type, then foralla, b :: A, homa(a, b) ~ (a =4 b) is a discrete type.

Proof. Since A is discrete, we may see hom 4 as a type family : A x A — U. We then use Theorem 5.8.4. from
[30]. By Postulate 3, we may check the contractibility of } ;. 4 hom4(a, b) objectwise. For any P :: PS,

(Xp:a homa(a, b)) p Zf:Apb(Hs (p) homa(a, f, s)) by Lemma 6.8. in [29].

12

~ Y.abhomy(a, b) because A is discrete.
~ Yab(I —ee (A, a, D)) by Postulate 5.
~ Ypaa=b because A is discrete. [

Theorem 6.2

Any crisp discrete type is an (oo, w)-category.

Proof. Segalness. We show by induction on P :: PS that for any discrete A :: U, A ~ b((P) — A) (through
constant mapping). Let P = [Py, - - -, P,;] and notice that for any i,

b($(P;) — A) ~b( ) (D) — homu(a, b)) ~ Y b((P) — homu(a, b))

a,b:A a,b:bA

and homy(a, b) ~ (a = b) is discrete by Lemma 6.1. Thus, the right hand side reduces to Y, .o a = b
by inductive hypothesis, which is equivalent to A. Hence b($(P;) — A) ~ A through evaluation to any
endpoint of $(P;). Using the universal property of (P), amap b((P) — A) is equivalently a cocone

1 1

$(Py)
\\ fn

14



where the data of each f; is equivalent to the data of an equality between its endpoints f;(left) = f;(right).
Hence, the data of such a cocone is equivalent to the data of two points of A and an equality between them,
that is, to A. This first part proves that any crisp discrete type A :: U is a SEGAL-type.

Completeness. Let A :: U be a crisp discrete type. By discreteness of A, for alln € N, A, >~ A,, so the
lower square appearing in Lemma 5.14 is a pullback square. O

Homotopy level is determined objectwise

r—' Lemma 6.3 l N

Postulate 7 may be reformulated as follows:

Forany X :: Y and P : X — Propy, IT ITT1PGes)| =P
R:PS ¢:Xg s:kR x:X

\

,—‘ Theorem 6.4 : Universal property of 0-truncated crisp types

Forany X :: U, e: (P, ¢, s) — ¢,(s) coequalizes y, v as follows:

P,Q:PS 0:P—psQ d:Xg vV \P:PSc:Xp

(2 y z;p)§<z Z;P)éx

where u(P, Q, 0, d, s) := (P, c*d, s) and v(P, Q, 7, d, s) := (Q, d, (¥0)s).
Moreover, for any Y :: Sety;, factorizing by ¢ yield an equivalence

? f:Ep.ps Leap FP—Y

\.

Proof. For the first assertion, notice that for any P, Q, , s, we have (¢*d), s = (d, o ko) s.

We now prove the second assertion. First, we prove that the fiber of ¢ is a proposition. Suppose that
f: Xp:ps Le:ap P — Y factors as ffand f¥: X — Y. Then we show [],.x fT(x) = f¥(x). Using Lemma 6.3
(we may, because Y is a set), we may show instead:

[TTTTIf (e s) =fes)

R:PS CZXR s: kR

Then, by assumption, both handsides of the equality are identical to f(R, ¢, s).
Finally, we prove the contractibility of the fiber by constructing a preimage. In order for a factorization
T X — Y of f tobe well-defined, we only have to show that (P, ¢, s) = f(Q, d, t) whenever c,s = d,t.

That is [ ],.y ©(v) where
vi= Y Y Y Y Y cs=dyt
P,Q:PS c:Xp d:X 5:%P t:XQ

and ®(P,Q, ¢, d, s, t) := (f(P, ¢, s) = f(Q, d, t)). ®is a proposition because Y is a set, so we may apply
Lemma 6.3 once again. Thus we have to prove ®(m,, i) for some m : b(&R — V) and i : &R. Using the
discreteness of PS, the idempotence of b and the fully-faithfulness of & we reformulate the goal as:

1T I] sfe=t'd— f(P,c ksi)=f(Q, d, kti)

R,P, QPS C:Xp dXQ S:R%psp t:R—>psp

but then, both handsides of the last equality are identical to f(R, s*c, i), whence the result. O
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Theorem 6.5 : Objectwise equality

For any two maps f, g :: X — Y where X :: i and Y :: Sety,
(f=8) < [T 11 frc) =gr(c)

P:PS c:Xp

Proof. This is a corrollary of Theorem 6.4, asserting that f and g are determined by their images on cells. O

Lemma 6.6

For all n, the n-sphere 5" is discrete.

Proof. For S~! = 0, this is given by Theorem 6.21. in [29]. Suppose the result to be known for some 7, then
§"*t1 _ given by the coequalizer

0
gt ——————p, gn+l
1

—is again discrete by the theorem loc.cit. O

Theorem 6.7

Let X :: U, then forany n > -2,

is-n-type(X) <> H is-n-type(Xp)
P:PS

Proof. The left to right implication is given by Corollary 6.7. in [29].
For the converse implication:

e Case n = —2.
The type X is contractible iff X — 1 is an equivalence, which may be tested objectwise by Postulate 3.

e Case n > —1.
We make use of Theorem 7.2.9. in [30]. We thus have is-n-type(X) « is-equiv (XS”+1 — X). Now by

Postulate 3, this is equivalent to

[T is-equiv ((XS”“) p— Xp)
P::PS

Howether, (XS"H) p =~ b(&P x 8" — X) ~ h(S"H! — Xp) where the last equivalence uses Lemma
6.6 from theses notes and Corollary 6.15. from [29]. Finally, b(S™1 — Xp) ~bXp ~ Xp by assumption,

whence the equivalence (XSHH) p =~ Xp. O

Segalness and completeness are preserved by hom

f—‘ Lemma 6.8 I .

For any pasting scheme P : PS, there is a commutative square

Cangp

($P) F$P

$(P) ——m—— SKP

16



Proof. In the general case, the canonical map cang : (Q) — XQ is given recursively by the cocone defined
in paragraph 5.3. Which, in the case Q = [P] = $P reduces to

$(P) $kP _ X$Pp ——— XQ

$canp

Thus giving the commutative square, by definition of cang. O

r—| Lemma 6.9 l

If A ::U is a SEGAL type and 4, b :: A, then for any pasting scheme P, the canonical map

D(&P —ee (A, 2, b)) — b((P) —ee (A, a, b))

is an equivalence

Proof. This is mainly commuting b to X-types and identity types, and using the bipointedness of canp. [

Lemma 6.10: hom preserves Segalness

Let A :: U be a SEGAL Type, and a, b :: A, then hom 4 (a, b) is also SEGAL.

Proof. b(kP — hom(a, b))
b($'KP —vee (A, a, b)

b(X$P —ee (A, a, )

P((3P) —ree (A, a, D)

b($'(P) —vee (A, a, b)

b((P) — homy(a, b))

)
)
)
)

Where first and last equivalences use the adjunction $ < hom. the middle one is Lemma 6.9, and the two
remaining ones are $<P ~ X$P and ($P) ~ $(P). Finally, we make use of Lemma 6.8 to see that this
isomorphism of hom types is induced by the canonical map (P) — XP. O

Theorem 6.11: hom preserves (co, w)-categories

Let A :: U be a an (oo, w)-category and a, b :: A. Then hom4(a, b) is an (oo, w)-category.

Proof. By Lemma 6.10, we only need to prove that homy(a, b) is a complete type. Howether, notice that
an n-cell ¢ : homa(a, b)y ~ H(Dyy1 —ee (A, a, b)) yielda (n+1)-cellc: Ayy1 ~ b(Dyr1 — A). Hence
the completeness of homy(a, b) follows from that of A by shifting indexes and commuting coherences at
sources of targets. O

Fibrant realizations are (oo, w)-categories

Lemma 6.12 : Universal property of suspensions in ©

Let P, Q: PSwithQ = [Qq, - -+, Qu), we have

$P—psQ~ Y. ] P—ps Qi

0<k<l<n k<i<l

Proof. This is directly seen by unfolding Definition 3.7. O
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Lemma 6.13 : Suspension of pushouts in ©®

If the leftmost square is a pushout square in ©, then the rightmost too.
fa $f2
A —— B $A ————— $B,
h ‘82 $f1‘ ‘$g2
r r
Bp——C $By ——— $C
& $$1
Proof. Let Q = [Q1, - -+, Qu] : PS.
$C —=ps Q =~ Yo<k<i<nlk<i<iC —ps Qi by Lemma 6.12.
~  Yo<k<i<n k<izi (Bt =ps Qi) X a—ps0; (B2 —=ps Qi) by assumption

(Xo<k<i<n [k<i<i B —ps Qi)
X Yocreton TTicict A—psQi (Do<k<i<n [Tk<i<i B2 —ps Qi)
because $f1 and $f, preserve the left and right points.

($Bl —PS Q) X$A—psQ ($B2 —PS Q) by Lemma 6.12. [J

12

f—‘ Lemma 6.14 I

Let P =[Py, ---, Py] : PS, the following cocone in © is colimiting:

N

$n+l Pl $n+1P2 $n+1pm

$”§2‘
$n g"l

$"C
1 g p

Proof. By unfolding Definition 3.7, we see that the following cocone in colimiting in ®:

1\$P /1\351’ /”‘\$P /1

Then we obtain the result by using Lemma 6.13.

Theorem 6.15: Representables are SEGAL-types

Let P :: PS, then J(P) is a SEGAL-type.

Proof. We show by induction on P :: PS the following property:
P(P) i Vn, VQuPS,b($"(P) = X(Q)) ~b(X($"P) — £(Q))

18



Suppose P = [Py, - - -, Py| such that P(P;) holds for every i. Then we have:

b($"(P) —ps £(Q)) =~ b($"(P) +p, -+, $" " (Pu) = X(Q))
because $/ preserves pushouts.
=~ H($"TH(P) = X(Q)) X5Duok(@) * Xo(Dysi()) P8 (P) = £(Q))
2 D(R(E"IP) = K(Q)) X(x(0,) k(@) T Xb(x(O) k(@) P(FE" T Pu) = K(Q))
by inductive hypothesis.

D($" P = Q) X5(0,50) " Xb(0n—0) P($" T P — Q)
by fully-faithfulness of & (see Postulate 1).
P(K($"P) —ps £(Q))
by Lemma 6.14 and fully-faithfulness of .

1

1

Specializing to the case n = 0 yield the desired isomorphism. O

Lemma 6.16

Let P : PS be a pasting scheme, and suppose it has two morphisms ¢, d : 0,41 —ps P such that
cosrc =dotgtand d osrc = cotgt. Thencosrc =cotgtand c =d.

Proof. We write P = [Py, -- -, Py] and proceed by induction on the dimension 7.

* Casen = 0.
In this case, ¢ induces an inequality (c osrc) < (c o tgt) as elements of [m].
Similarly (d o src) < (d o tgt), whence the result.

e Casen > 0.

In this case, we may write ¢ = (f, (07)ic;) and d = (g, (7j);e;). First, notice that f(0) = ¢(0) and
f(1) = g(1) because src : O,, = 0,41 preserves endpoints (because n > 0). So we deduce I = | and
f = g. Then, for each i € I, 0; o src = (c o src); (here we use n > 0, see Definition 4.8). And similarly,
T; o tgt = (d o tgt);, so 0; o src = T; o tgt. Reversing 0; and 7; above also yield 7; o src = 0; o tgt. Hence,
by inductive hypothesis, we get 0; o src = 0; o tgt and ¢ = 7. In particular we already have ¢ = 4.
Finally, using the definition of src and tgt again, we have (c osrc); = (c o tgt); for each i, whence
cosrc = cotgt.

O

Theorem 6.17 }

Let P : PS, then &(P) is an (oo, w)-category.

Proof. Itis a SEGAL-type according to Theorem 6.15. We now see the completeness. On the first hand, notice
thatif ¢, d :: X(P),, then ¢ = d is propositional by Postulate 1 and Theorem 4.3. On the other hand, using
Lemma 6.16, one deduces that if there is an equivalence ¢ ~,p) d, then ¢ = d and this equivalence is unique.
So we proved that c = d and ¢ ~ d are equivalent propositions, which gives the result. O

Remark 6.18
In the proof above, we have achieved a bit more, namely: we have shown that X(P) is skeletal. We have also
shown that 1 ~ J(x) is an (oo, w)-category (alternatively, it follows from 1 being discrete).

Stability under pullbacks and sums

Lemma 6.19: Cells of pullbacks and sums .

Let A, B, C :: U be three (oo, w)-categories.
* For any two crispmaps f : B—+ A,g:: C — Aand P :: PS,

(BXAC)pZBpXAPCp
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¢ Similarly for sums:
(B+C)p~Bp+Cp

Proof. Pullbacks.

b(£(P) = BxaC) = b((X(P) = B) X ypy_p (£(P) = C)) by universal property.
b(&(P) — B) x »(X(P)—B) (&(P) — C) by Theorem 6.10 in [29].

~

Sums. This is given by Postulate 6. O

Lemma 6.20: Invertible cells of pullbacks and sums

We have the following caracterisation of invertible cells in pullbacks and sums:
e Forany A, B, C :: U SEGAL-types, crispmaps f : B =+ A, g C = Aandn: N,

nv inv . inv
(BxaC)y =~ B, X ainv G

e Forany B, C :: U SEGAL-types and n : N,

(B+C)imy ~ B, +Cy

. J

Proof. Pullbacks.

(B X A C)inv

e b(E,y1 — BxaC) by Lemma 5.14.

b((Ens1 — B) Xg,,,—»4 (Eny1 — C)) by universal property.
b(En+1 — B) Xy, —a) ?(Eny1 = C) by Theorem 6.10 in [29].

inv nv
B X aine Gty

111

Sums. According to Lemma 6.19, a n-cell f of A 4 B is either a n-cell of A or a n-cell of B, Then the data
of a left (resp. right) inverse of f in A + B will factor through the same component as f. Hence f will be
invertible iff it is as a cell of A or as a cell of B. O

Lemma 6.21: Stability under pullbacks

Let A, B, C :: U be three (oo, w)-categories with two crisp maps f :: B— Aand g :: C — A. Then
the pullback B x 4 C is again an (co, w)-category.

Proof. Segalness. Let P :: PS, we have

p((P) = Bx4C) b(((P) = B) X (py—g ((P) = C)) by universal property.
b({P) = B) xy((p)—p) »((P) = C) by Theorem 6.10 in [29].
Bp x4, Cp by Segalness of A, B, C.

(Bx4C)p by Lemma 6.19.

11

Completeness. We use the reformulation Lemma 5.13 of completeness. Let  : IN:

(BxaC)y =~ (Byxa,Cu)n by Lemma 6.19.
~ (B, X piny, Cinv.), by completeness of A, B, C.
~ (Bxyh C);{‘ll by Lemma 6.20. O

Lemma 6.22 : Connectedness of (P)

Let P: PSand X, Y :: U, then any map b((P) — X + Y) factors through X or Y.
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Proof. Because of Postulate 6, we have that &(P) is a connected object in the following sense:

A type C :: U is connected if for any X, Y :: U, any map b(C — X +Y) factors through X or Y. Now one
may check that any pushout of connected types is again connected. By definition (see Definition 5.2) of (P),
it then follows that (P) is also connected. O

Lemma 6.23: Stability under sums

Let B, C :: U be two (oo, w)-categories. Then their sum B + C is again an (oo, w)-category.

Proof. Segalness. Let P : PS, we have
»((P) - B+C) »(((P) = B)+ ((P) = C)) by Lemma 6.22.

b((P) — B) +b((P) — C) by Theorem 6.21 in [29].

Bp+Cp by Segalness of B, C.

(B4+C)p by Lemma 6.19.

1 1R R

Completeness. We use the reformulation Lemma 5.13 of completeness. Let n : IN:

(B+C)n =~ (Bu+Cn)n by Lemma 6.19.
~ (B, +Ci)n by completeness of B, C.
~ (B+C)m, by Lemma 6.20. O

7 The Subuniverse of Codiscrete Types

7.1 In this section, we explore the properties of the f-modality in our setting. We will show that the codiscrete
types (i.e. §-modal) are those whose cells are entirely determined by their 0-skeleton. Thus they have
contractible hom-types and are to be thought as a directed counterpart of (—1)-truncated types. Among
their properties one has that they form a reflexive subuniverse, and all of them are SEGAL-types.

Definition 7.2 : Codiscrete types

Let A : U. the type A is said to be codiscrete iff it is f-modal. That is, when the canonical map
(—)¥: A — #A is an equivalence. We let Codisc denote the type of codiscrete types.

7.3 According to Section 3. (p.20) in the work of M. SHULMAN [29], this is equivalent to (—)* : A — #A
admitting a retraction. We also mention the following usefull fact about 4, deduced from the work loc.cit.

]

Theorem 7.4 : Codisc is a subuniverse ]

Codisc, with the § modality, form a reflexive subuniverse in the sense of Section 7.7 in [30].

Proof. See [29], Section 3. O

7.5 In particular, they are stable under identity-types, dependent sums and product. We now introduce a
characterization of codiscrete types in terms of their cells.

,—‘ Theorem 7.6 : Codiscrete crisp types

Let A :: U be a crisp type, then A is codiscrete iff for all P :: PS, the canonical map bk(P) — X(P)
induces an equivalence

p(bk(P) = A) ~ Ap
That is, iff the P-cells of A are entirely determined by their 0-skeleton.

\. J

Proof. First, suppose that A is f-modal, we see that is satisfies the aforementioned property by Corollary
6.26 in [29].
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Conversely, suppose that for all P, b(b&k(P) — A) ~ Ap. Then we see that A — #A is an equivalence
using Postulate 3, so we show it objectwise. Let P :: PS, then using Corollary 6.26 in loc.cit. and the
assumption on A:

Ap = b(bX(P) — A) = b(X(P) — tA) = (A)p

whence Ap — (§A)p being an equivalence. O

Lemma 7.7

Let A :: U be a codiscrete crisp type, and a, b :: A. Then hom4(a, b) ~ 1 is contractible.

Proof. According to Postulate 3, it suffices to show it objectwise. Let P :: PS, we have

hom 4 (a, b)p D($'K(P) —ree (A, a, b)) by Postulate 5.

1R

L ro(sx(p)—a) P (fy (left) = a) x b(f,(right) = b) by Lemma 6.8 in [29].
~ Yrp2-a) P(f(0) =a) xb(f,(1) =) by codiscreteness of A
(and Corollary 6.26 in loc.cit.).
= Yy oar (X = @) x (y = 1) by Theorem 6.1. in loc.cit.
~ 1 by Lemma 3.11.8 in [30]. O

Lemma 7.8

Let A :: U be a codiscrete crisp type, then forall n : IN,

~ AlNV
An+1 — ‘ip+1

Proof. We use Lemma 5.14 and the definition of E,;; to compute Ainnll. Because A is codiscrete, using

Corollary 6.26 in [29], one has Aiqnll ~b(bE, 1 — A). Soitsuffices to show that the map 2 ~ bD,, 1 — bE, 11
is an equivalence. Recall that E,, | is the colimit

n+1 n+1

D D
. $/n! Xy /Sn $/Vl!
colim / \ / \
Dn ] Dy

X9 (3

and that, according to Theorem 6.21 in [29], b preserves pushouts.
Case n = 0. In this case:

2 2
bE; ~ colim / &2?‘ y \ ~ 2
1 4 1

hence the map bl — DE; is an equivalence.
Case n = 1. Similarly,

. 2 . . 2 .
bE, 1 =~ colim / K / {J ~ 2
2 2 2

whence bD,, 1 — bE, 1 being an equivalence. O

Lemma 7.9 : Segalness of codiscrete types

Let A :: U be a codiscrete crisp type. Then A is a SEGAL-type.
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Proof. Notice that because b preserves pushouts, for any P = [Py, - - -, P,] = PS,

b(P) ~ colim \ / \ P RN /
K~ st

b:($'Py) b:($'P2) b:($' P)

And for each i, b($'P;) ~ 2 by Postulate 4. Hence b((P)) ~ Fin,, 11 ~ b(Xk(P)). Then, by discreteness of A,

b((P) — A) ~b(b(P) — A) =~ b(bX(P) — A) ~ Ap O

Lemma 7.10

Let A :: U be a codiscrete crisp type, then it is an (oo, w)-category iff it is a proposition. ]

Proof. Because A is discrete, for each P = [Py, - - -, Py|, Ap ~ b(b&(P) — A) ~ A™. Hence, using Theorem
6.7, A is a proposition iff A, is.

Now, forn > 0, Ain”ll >~ App = Ay X Ay > Ay, So the only obstruction to completeness is for n = 0.
That is, A is complete iff A"V ~ A

Howether, Ail'“’ ~ Aj >~ Ay X As. So A is complete iff the (diagonal) map A, — Ay X Ay ~ Ail'“’ is an
equivalence. Which occurs exactly when A, is propositional, that is iff A is. O

8 (oo, n)-Categories

8.1 In this section we introduce a notion of (oo, 1)-category for any 0 < n < w, which will be special cases
of Definition 5.12. Then we relate this definition to that of (oo, w)-categories and present some results about
them.

,—‘ Definition 8.2 : (o, n)-category

Let A :: U be an (o0, w)-category. It is said to be an (oo, n)-category (for some n : IN) iff all its m-cells
for m > n are invertible. We also call co-groupoid any (co, 0)-category.

Theorem 8.3 : discrete types are the co-groupoids <

A crisp type A :: U is discrete if and only if it is an co-groupoid.

. J

Proof. We know from Theorem 6.2 that any discrete type A :: U is an (oo, w)-category. By completeness and

discreteness we also have A',[‘ll ~ Ay ~ Ay for all n. Hence any discrete type is an co-groupoid.

Conversely, suppose A :: U is an co-groupoid. Then by completeness, A"V

n+l —
A'""1 ~ A,y for all n. Hence, for all n, A1 >~ A,. And more generally this observation holds for any

other disrete crisp type. We may now prove that Ap ~ A, by induction on P, abstracting over A :: U any
oo-groupoid. Suppose P = [Py, - - -, Py] such that Ap, ~ A, for each i. Then:

~ A, and by definition,

Ap =~ bH((P) — A) by Segalness.
~ Agp, X4, X4, Agp, because b preserves pullbacks.
>~ Yo am:va homa(ag, ay)p, X -+ x homa(ay_1, am)p, by$" = hom.
>~ Yo, am:bahoma(ag, ap)« X -+ x homy(ay_1, am)s by inductive hypothesis.
~ Yag o an:bA (@0 = a1) X - X b(ay1 = am) because A is an co-groupoid.
Thus, the map bA — A is an equivalence by Postulate 3. O
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Lemma 8.4

Let A :: U be an (oo, w)-category. Then it is an (oo, n + 1)-category iff all its hom-types are (co, 1)-
categories.

Proof. Let A :: U be a (o0, n + 1)-category and 4, b : bA. Then for any m > n,

hom(a, b)w b(Dis1 —ee (A, a, b)) by $’ < hom.

D(EfD,, a4 (fllefty) = ay) x (f(right,) = b,))

YfiAnq P (o (lefty,) = ay) x b(f, (right,) = b,) by b commuting to ¥ and x.
Zf:AimnYH b(fb(leftb) = ab) X b(fb(rightb) = bb) by hypothesis.

b(Emt1 —>ee (A, a, b))

D($'Epy —ee (A, a, D)) because $'E,; ~ E;; i1
hom 4 (a, b)inv by $’ 4 hom.

1R

1R

Conversely, suppose homy4 (a, b) are (oo, n)-categories for all a, b : bA. Then for any m > n

b(Dyi1 — A)
D(Xa,b0:4 D1 —ree (A, a, b))
Yu b:pA ?(Dig1 —ee (A, a, b)) bybcommuting to X and x.

Am+1

= Za,b:bA homA(ar b)m by $’ 4 hom.

~ Yo ppahoma(a, b)Y by hypothesis.

= Za,b:bA b($,Em —ee (A, a, b)) by $/ = hom.

~ b(Eus1 — A) because $'E;, ~ E;iq

~ AR -

r—| Lemma 8.5 l

Let A :: U be a crisp type and 0 < n < w. Then it is an (co, n)-category iff:
e It satisfies the n-SEGAL condition: For any P : PS, src” : (9"P) — X(P) induce an equivalence

Ap ~b((3"P) — A)

e It is n-complete: For any m < n, the canonical map D, — E,11 yield an equivalence
Am ~ Apia

Where src” is given inductively by the cocone whose legs are the $'(0"P;) — $'X(P;) — X(P).

Proof. In the case n = w there is nothing to prove. We then proceed by induction on n : IN.
The case n = 0 is given by Theorem 8.3.
We then show the result for n + 1 assuming it to hold for 7.

Suppose A :: U is an (oo, n + 1)-category.
(n+1)-Segalness. Let P = [Py, - - -, Py] :: PS. We have

Ap =~ H((P)— A) by Segalness of A
~  Agp, XA, Xa, XAgp, by b commuting to pullbacks.
>~ Yo, am:pa homa(ag, ay)p, X -+ x homa(ay,_1, am)p, by $  hom.
>~ Yo, am:ba P((0"P1) — homy(ag, a1)) x - - by inductive hypothesis
X b((0"Py) — hom(ay—1, am)) and Lemma 8.4.
~ Yoag o an:hAP($(0"P1) —ee (A, ag, a1)) X - by inductive hypothesis

X b($'(0"Pu) —vee (A, a1, am)) by $’ < hom.

1

b((9"T1P) — A)

(n + 1)-completeness. clear because A is complete as an (oo, w)-category.
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Suppose conversely that A is (n + 1)-SEGAL and (n + 1)-complete. First, notice that for any a, b : bA,
homy (a, b) is n-SEGAL. Indeed, for any P :: PS, we have the following chain of equivalences:
b((0"P) — homy(a, b)) $'(0"P) —ee (A,a, b))  Dby$ —hom.
(0"T1$P) — 44 (A, a, b))
X($P) —ee (A,a, b)) by (1 + 1)-Segalness of A
X(P) — homy(a, b)) by $' - hom.

1 1R R

Moreover, hom4 (a, b) is also n-complete. Indeed, for m < n:

b(Em — homy(a, b)) D($'En —>ee (A,a, b)) by $ 4 hom.

D(Eps1 —ree (A,a, D))

D(Dypt+1 —ree (A,a, b)) by (n+ 1)-completeness of A
b (

Dy — homu(a, b)) by $ - hom.

1R R

So by inductive hypothesis, all hom-types of A are (oo, n)-categories. So it remain to show (using Lemma
8.4) that A is also an (co, w)-category.
Segalness. Let P = [Py, - -+, Py] :: PS,
b((P) — A) b($'(P1) = A) Xa, -+ Xa, 0($(Pn) = A) by b commuting to pullbacks.
Yoao, - am:pa P((P1) — homa(ag, a1)) x - - -
X b((Py) — homy(ay—1, am)) by $’ - hom.

1R

= Za0,~--,am:bA p((9"Py) — homy(ag, a1)) X - -- by Segalness and
X b((0"Pp) — homy (ay,—1, am)) n-Segalness of hom-types.
~ b($(0"Py) — A) xa, - - Xa, b($(0"Py) — A) by $' - hom.
~ b((3"T1P) — A)
~ H(&(P) = A) = Ap by (n + 1)-Segalness of A.

Completeness. For k > 1, the equivalence Ay ~~ A}C’L‘r’l is seen from the hom-types of A being complete. In the
case k = 0, it follows from A being (1 + 1)-complete. O

Theorem 8.6

If 0 < n < w, any pullback or sum of (oo, 1)-categories is again an (oo, 11)-category.

Proof. It follows directly from Definition 8.2, Lemmas 6.21, 6.23 and 6.20. O

9 Directed Homotopy

9.1 In this section we introduce some constructions of directed homotopy theory to motivate further devel-
opment of this type theory. We postulate a reduced suspension, which should be obtained semantically as
a localization of an (oo, w)-category. Then we show that there is an adjunction G4% generalizing that of
standard homotopy theory.

Definition 9.2 : Automorphism category

Let (A, a) :: U, be a crisp pointed type. We define its endomorphism type to be
End4(a) := homa(a, a)

By analogy with the loopspace construction of [30], we also denote it a (A, a)

. J

9.3 Note that by Lemma 6.10 (resp. Lemma 8.5), if A is a SEGAL-type (resp. an (oo, n + 1)-category) then

_>
Q) (A, a) is again a SEGAL-type (resp. an (oo, n)-category). In the next definition, we consider a new kind of
higher inductive type, which should be thought as a localization of a category.
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Definition 9.4 : Reduced suspension <

We postulate, for (A, a) :: Us a pointed (oo, w)-category, its reduced suspension f(A, a) i Us. Itis
caracterised by the following universal property.

e Itisan (oo, w)-category.

e There is a crisp pointed map locg , :: ($'A, left) —e Q(A, a) such that is-inv( fymerid(a)).

e For any pointed (oo, w)-category (B, b) :: U, and crisp pointed map f :: ($'A, left) —o (B, b)
such that is-inv( fymerid(a)), f factors uniquely through loc, ,.

\

9.5 The idea is that the reduced suspension f(A, a) is a localization of $' A at the 1-cell merid,. Using this
functor, one may construct an analogous of n-spheres, namely directed n-spheres as follows.

. ?0 = 2.

. ?"*1 = f(?”)

Definition 9.6: Unit 74, : b((4, ) = O X (A, a))

%
Forall (A, a) :: Us a pointed (oo, w)-category, there is a canonical map 174, : (4, ) —e Q ?(A, a).
Which is given by composing the unit A — homg 4 (left, right) of the $’ - hom adjunction with the
map homg 4 (left, right) — homg(A a)(loc left, loc left) induced by the localization loc g ,.

9.7 Notice that the last map is not entirely trivial. We shall mention that in general — in our type theory —
there is no map homx(x, y) — homx(x, z) arising from a 1-cell y — z in X. Indeed, we may only define this
map objectwise

homX(x, y)p — homX(x, Z)p (P S PS)

and there is no way to wrap it into a map homx(x, y) — homx(x, z) as this would require giving higher
coherences (naturality squares for each morphism P —pg Q in ®, and coherences between these for any two
composables morphisms of ® and so on...) And, to be honnest, this is a major issue with this type theory
in its current state. Howether, in the specific case where we have an equality y =,x z, then we may trans-
port along this equality, which gives us the sought map homx(x, y) — homx(x, z). Since the localization

(A, a) is assumed to be an (oo, w)-category, it is complete, so we know that there is an equality

loc left = loc right

b T (A, a)
witnessing the invertibility of loc, merid(a). Thus we may transport along this identity, whence a map

homg(A,u)(Ioc left, loc right) — homg(A,u)(Ioc left, loc left)

From now on, we will write loc(left) (resp. loc(right) and loc(merid(a))) more concisely as left, right and
merid(a).

'—‘ Theorem 9.8: f = 6)

Writting (0o, w)-Cat, for the type of pointed (oo, w)-categories, there is an adjunction

¥
/\
(00, w)-Cats L (00, w)-Cats

\:/
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In the following sense: For any two crisp pointed types (A, a), (B, b) :: U,, there is an equivalence

b(f(A, 2) = (B,1)) — (_(> a (B, b))

fo— (Q (fb)OWAa)

Proof.
(T (A, a
fb(($A, left
f:b(($'A, left, right

—e (B, 1))

—e (B, b)) s.t. is-inv( fumerid(a))
—

s

ee (B, b, b)) with f.merid(a) = id,

~— | ~— | ~— | —

b((A, a) e (B, b))
O
ol =
Lemma 9.9 : Representability of (2
Let (A, a) :: (co, w)-Cat,, there is an equivalence
(S 54 (A, ) b (A, a)
Proof. This follows directly from paragraph 9.5 and Theorem 9.8. O

10 Perspectives and Conclusion

10.1 On a presheaf type theory. One of the main features of this type theory is the ability to speak about
a higher category of presheaves over the category ©. In fact, it seems that most of this work does not rely
crucially on the category ®, namely, postulates 1, 2, 3, 6 and 7, would find a semantic in any suitable cat-
egory C. At least for a locally finite category which could be internalised in MLTT. This remark raises the
prospect of similar type theory, finding semantics in many presheaf co-topos. For instance, one could mimic
this construction to speak about other models of co-categories, or other higher algebraic structures such as
I'-spaces.

10.2 On functoriality. Although our approach has allowed us to define basics constructions of higher
category theory, it crucially lacks the “free” functoriality that should be the directed counterpart of the
homotopy invariance of every construction made in standard HoTT. For instance, the types of equalities
x =4 Yy between two elements of A comes equiped with a functoriality in x, y given by the transport along
other paths of A. More concretely, given p : ¥y =4 z, one gets a transport map x =4 y — x =4 z. Thisisa
non-directed account for the concatenation of 1-cells. Of course we should expect a similar pattern to occur
in our directed variant, that is, for any x, y, z : Aand p : hom4(y, z), a map homy(x, y) — homa(y, z). But
the type hom 4 (x, y) is not even defined for x, i : A. But we expect that hom 4 could be seen as a map

homy : A x AP — U

which would, then, be functorial in its arguments. To solve this issue — and seemingly several related ones —
it seems to the authors that working with objects of lax functors X — Y between types X, Y would gives a lot
more freedom. Recall, as pointed in paragraph 1.3, that if A is an (co, w)-category, the type I — A should
not be seen as the correct space of 1-cells in A because it does not capture the higher cells transiting between
the 1-cells of A. Howether, it seems that I — X, as a right adjoint to the CRANS-GRAY tensor product Y & I
would be a better behaved alternative. And that the correct notions of slices or hom-types could be carved
out of this type of lax functors I — X.

10.3 The CRANS-GRAY tensor product. As mentioned in the previous paragraph, there is an alternative to
the cartesian product of categories called the CRANS-GRAY tensor product ®. which insert higher directed
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cells instead of higher isomorphisms in the squares appearing in X ® Y. The archetypical example is the
following one. On the left, we represent the usual cartesian product I x I, with its degenerated triangle.
While on the right, we depict their CRANS-GRAY product I x I.

/ /
/

The right one indeed is a 2-categorical object, while the usual cartesian product I x I remains 1-categorical
(as made precise in Theorem 8.6). This nature correct the defect mentioned in paragraph 1.3 from the intro-
duction, and explains why a right adjoint (I — —) to (- ® I) should capture the correct higher cells. More
over, it is expected that the suspension $’ we have postulated should be recovered from the tensor product,
giving a further motivation for including it in our type theory. It is finally also expected that the notions
of (co)cartesian fibration would be definable using ®, thus opening the way towards a formalization of the
(00, w)-categorical YONEDA lemma.

10.4 A bunched variation of CellTT. As mentioned in paragraph 10.3, we would like to include in our type
system new binary operations. At least the CRANS-GRAY tensor product (- ® —), together with the type
of lax morphisms (- — —) as its right adjoint, and perhaps even a type of oplax functors (- — —) as a left
adjoint. This raises several difficulties, as now the two differents products x and ® should be reflected in
context comprehension operations. Concretely, in our cases, we would expect the grammar of context to be
at least as rich as:

ILA == o|TxA|T,x:A

This additional complexity naturally leads us to the lands of bunched logic, historically introduced by D. J.
PYM and P. W. O’'HEARN [21], then studied by U. SHOEPP [27] and more recently revisited by M. RILEY [26].
The most difficult part seems to lays in the entanglement of bunched logic and dependent types, although
in our case, it is expected that dependancy in ®-types would not be needed (or what even should be its
semantics ?). We should also mention that it would leads to a rather specific kind of bunched logic, be-
cause ® is both non-symmetric, and semi-cartesian. The litterature on bunched logic seems to cover mostly
symmetric monoidal products at the moment so this would require some new theory, although major com-
plications are not foreseen on the side of non-commutativity. On the other hand, semi-cartesianness should
facilitate our task, as it allows one to discard ressources. More specifically, we anticipate some simplification
regarding the complexity of type checking, which is one of the major drawbacks of a bunched typing system.

10.5 Towards directed homotopy theory. Finally, we would like to include a small picture of what should
be available with a theory including the CRANS-GRAY tensor product and types of lax maps. First, as

mentionned earlier, we might define slice types A/a for an (oo, w)-category A and any point a of A, and

more generally comma types f /a- These types should fit in a comma square, which is a variant of a pullback
square, where the commutativity has been replaced by a natural transformation as depicted below.

f/a—>B

11— A

Now, suppose f : (A, a) —« (B, ) is a pointed map in the sense that it is equiped with an identity fo : f b = a.
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Then one may consider the (usual, homotopy) fiber of p : f /a — B, as depicted below.

(A a) — 1

=
<

f/a—>B

~—

1———— A

Then, by a variation on the pullback pasting lemma, it is expected that the rectangle is again a comma, thus
yielding the directed loopspace ()(A, a) = homy(a, a). Now, one may formally insert to this picture a

third square (a priori not a comma) by considering the directed loopspace (_)>(B, b), which makes the large
horizontal rectangle into another comma.

OB b) — s O(Aa) — 1
Qf
q b
1 f P B
fo /a
f

a

% %
Now, by making the further observation that () (f /a) ~ Qf / id,- One may carry on this procedure, leading
to the following (informal picture), generalizing the sequence appearing in (non-directed) homotopy theory.

am——1

BZAHB(/I/Q) — 1
1 OB aA 1
1 A B

In general, one cannot expect the orange squares appearing in this picture to have a specific property. But
if f is a fibration in a suitable sense (that is if it allows to lift cells from A to B), then the orange squares
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are indeed expected to be behaves as pullback or commas depending on the nature of the fibration f. Now,
taking the O-truncation of this diagram should yield a long sequence

<o TH(B) = =7 (fa) = T(B) > = 7 (f/a) > T(B) = 7(A)

Where the object appearing are posets for the three extremal ones, then monoidal posets for the further ones.
That is, monoids equiped with a preorder, preserved by the inner product. Where the degree of exactness
depends on the position in the sequence. For instance, it should be exact at purple points, and lax exact at
blue points. Which means that the image of a map will be the set of negative points in the following one.
The authors hope that such kinds of constructions would open the way to computation of directed
homotopy monoids of higher categories such as the directed spheres mentioned earlier in this paper.
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A Semantics of CellTT

A.1 In this Appendix, we sketch the semantics of the type theory we have introduced, thus providing mo-
tivation for its axioms. We consider a model in simplicial presheaves over ®, equipped with the REEDY model
structure, relative to the QUILLEN model structure on A. Which is, according to J.E. BERGNER and C. REZK
[6], the same as the injective model structure. We denote sPsh(®) this model category. We will denote ~ (a
zig-zag of) weak equivalences and = an isomorphism in a model category. We let & : @ — @ < sPsh(®)
denote the YONEDA embedding and recall the following properties of this model structure, which may be
found in [28, 24, 11, 18].

* Any objectwise discrete object of sPsh(®) (i.e. set valued) is a fibrant object.
e Any object of sPsh(©) is cofibrant, cofibrations are the monomorphisms.

e Any two objects X, Y of sPsh(®) have a mapping space Map(X, Y) € A and an internal Hom denoted
Hom(X, Y) € sPsh(®). Moreover, Map(&(P) x X, Y) = Hom(X, Y)p forany P € ©,and Map(X, Y) =
Hom(X, Y). are the global sections of Hom(X, Y). Map(X, Y) is fibrant as soon as Y is because every
object is cofibrant in sPsh(®).

e Amap f : A — B in sPsh(®) is a fibration iff for each P € Ob(©) the following maps is a KAN
fibration
Ap — Bp X MpB MpA

Where MpX = lim g pjor (X| (@, p)or) is the matching object of X. This holds more generally for another
REEDY category R instead of ©.

¢ Itis a model of MLTT with dependent sums, dependent product, identity types, pushout types, trun-
cations and a univalent universe for each innaccessible cardinal above X.

We will call set any discrete simplicial set. Note that limits and colimits being computed objectwise implies
that sets are stable by limits and colimits.

Lemma A.2

Let f : A — B be a map between set valued presheaves in sPsh(®). Then it is a fibration.

Proof. First, notice that if X is set valued, then for any P, MpX is a set as a limit of sets. Now, if A and B are
set valued, this argument shows that Bp X 1,5 MpA is also a set (again taking a limit of sets). Hence, the
map Ap — Bp X p,p MpA is a KAN fibration as a map between discrete simplicial sets. O
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Postulate 1

A.3 Semantic of PS. According to Lemma A.2, any objectwise discrete presheaf is a fibrant object. Hence,
we may model the type PS of pasting schemes as the constant presheaf [PS] := P — Ob(®), which is ob-
jectwise discrete. Because it is constant, it agrees with our remark made in paragraph 4.12 about PS being
p-discrete.

A.4 Semantic of P —pg Q. We should model the types P —ps Q as a fibration over [PS]. By Lemma A.2,
it suffices to model P —pg Q for each P, Q € [PS], which may be given by [P —ps Q] := Homg(P, Q).

A.5 Semantic of & : PS — U/. We now consider the YONEDA embedding postulated in Postulate 1. Once
again using Lemma A.2, it suffices to give an interpretation [&P] as a set valued presheaf for each P. Which
we define as [&P] := X(P), the representable functor associated to P. [X] is now given by the fibration
Lpcon@) £(P) — Ob(O).

We also have to give, for each 0 : P —pg Q, a map [X(0)] : &(P) — X(Q), which is gievn by X(¢). So
the semantic of X is really given by the YONEDA embedding. In particular, because & : ® — sPsh(@®) is
functorial, it shows that the equality rules postulated in Postulate 1 holds on the nose. So they could even
be postulated as strict equalities.

For Pand Q, [P —ps Q] is a constant (and set valued) presheaf with value Homg (P, Q), and b(&(P) — X(Q))
is interpreted as the constant presheaf whose value is Hom(&(P), &(Q))«. Then both coincides since

Hom(X(P), &(Q))« = Map(&(P), X(Q)) ~ Home (P, Q)

by the YONEDA lemma, so this justifies the last point of Postulate 1.

Postulate 2

A.6 Discreteness. Recall that b is interpreted as the map X — (P — X.) which turns a presheaf X into
the constant one whose value is X,. Hence a type interpreted as X in sPsh(©) is b-discrete whenever the
map bX — X is a weak equivalence. That is, when for any P € Ob(®), the map x —"x : X, — Xp is
weak equivalence of simplicial sets. On the other hand, the same type will be cellularly discrete whenever
the maps Xg — Map(&(P) x X(Q), X) are weak equivalences for each P and Q. By specializing this last
condition to Q = %, we see that cellular discrete types are b-discrete. We will then focus on the converse
implication.

~— Definition A.7 |

Let P, Q € Ob(®). We denote Dp ¢ (or D for short) the category of elements of X(P) x £(Q) €
@. Hence D is a category whose objects are the triplets P +~— R — Q, and morphisms are the

commutative diagrams:
P
27
p

R —— Ry,
Q

And Fp g : D — Psh(®) < sPsh(©) is the diagram sending such a morphism in D to X(p) :
K(Ry) = K(Ra).

\

r—' Lemma A.8

The category D is REEDY and has fibrant constants (see 15.10 in [11]).

\. J

Proof. The category D is REEDY as a category of elements of a presheaf over the REEDY category ®. More
precisely, the degree of P <~ R — Q is defined as the degree of R, and the increasing (resp. decreasing)
morphsms in D are those which are increasing (resp. decreasing) in ©.
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In order to see that D has fibrant constant, we use the Proposition 15.10.2.(2) in [11]. That is, we must
show that each category d(a | <1_)) is empty or connected. Let X be the presheaf X(P) x X(Q) (seen as a set
valued presheaf), we will in fact show this result for X any such presheaf and D its category of elements.
Suppose a : Xp is a P-cell of X. Then an object of o(« | %) is the choice of a decomposition & = T for
some ¢ a strictly decreasing morphism of @ and «’ another cell of X.

(_
e If « is non-degenerate, then there is no-such decomposition, hence d(« | D) is empty.

¢ In the other case, there is a unique decomposition & = T *a’ where o is non-degenerate and o strictly

decreasing. Hence, for any other object & = T Bino(a | %), we may decompose uniquely B as W*ﬁ’
where B’ is non-degenerate and § is decreasing. By uniqueness of such decompositions, it follows
that & = % o T and B’ = «. That is, there is a (unique) commutative diagram

<—
Hence, the decomposition & = o/ is a terminal object in d(a | D), so the matching category is
connected. O

r—' Lemma A.9

Let R € ® and consider the colimit

oR = colim(Q_m) ca(B1R) £(Q)

Then the canonical map dR — X(R) is a monomorphsim, identifying dR with the subpresheaf of
morphisms f : Q — R which factors through a strictly increasing morphism.

\. J

Proof. Because colimits are computed objectwise and monomorphisms are alo objectwise, we show that the
map (dR)p — K(R)p is injective for each P € Ob(®). We use the explicit description of (dR)p as

I#:0-& Home (P, Q)
(To®,f)~ (T, Tof) (T€®)
Such that the canonical map (dR)p — &(R)p sends the class [(?, f)] to 7o f. Then we see that the image

of (0R)p is the set of morphisms P — R which factors through a strictly increasing morphism 7.
We now show the injectivity. Suppose there is a morphism & : P — R such that h = 7o f= 7o g

<_
for some strictly increasing morphisms 7 and T. Then factorizing f as 7 o f and g as ? o <§, we

%
get 7o ? = 7o ? and f = <§ by uniqueness of the factorization of . Hence, there is a chain of
identifications

(T, f)=(F, Fof)~m(Tof, F)=(Tog, §)~ (T, To%)=(T,9 O

Lemma A.10

The nerve ND of the category D is contractible.
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Proof. Recall that the category Dp, g is the comma (or the category of elements) ®/ X(P) x X(Q)- Then,
thanks to the hard work of D-C. CISINSKI and G. MALTSINIOTIS in [8], it is know that the category © is a
strict test category (Exemple 5.12 in loc.cit.). Thus, by Theorem 2.8 in loc.cit. it is totally aspherical, which
implies precisely the contractibility of Dp,q. O

Theorem A.11 }

Both notions of discreteness coincide.

Proof. We already have seen the first direction in paragraph A.6, so we focus on the other one. Suppose that

pX — X is a weak equivalence for some fibrant object X (we assume X to be fibrant because it models a

type in the empty context). Then, for each P € Ob(©), we have a weak equivalence X, — Xp. Recall that

we want to show that the map X, — Map(&(P) x £(Q), X) is a weak equivalence.

We have seen (Lemma A.8) that D is REEDY with fibrant constants. Moreover, for any objecta = (P <— R — Q),

the latching category 8(3 1 a) is isomorph to 8(@)> 1 R), identifying the latching map L,Fp o — &(R) with

the canonical map dR — X(R), which is a cofibration according to Lemma A.9. Hence, using Theorem
19.9.1.(2) from [11], we have a weak equivalence

hocolimp Fp, g = colimp Fp o = X(P) x X(Q)

Then using Theorem 19.4.4.(1) in loc.cit. (we may because every object is cofibrant), we have a weak equiv-
alence
Map(&(P) x &(Q), X) =~ holimpep Map(Fp, g, X)

Moreover, there is for each &« = (P < R — Q) a weak equivalence
Map(1, X) = X, ~ Xg = Map(Fp,g(«), X)

between fibrant objects (recall that X, and Xy are fibrant by Proposition 18.5.3.(2) in [11]). Hence using
Theorem 18.5.3.(2) in loc.cit., there is a weak equivalence

holimpoepr Map(1, X) =~ holimpep Map(Fp, g, X)

By the previous reasoning, the righthand object is weakly equivalent to Map(&k(P) x &(Q), X). Similarly,
we have holimpep Map(1, X) =~ Map(hocolimp 1, X) by Theorem 19.4.4.(1) in loc.cit.. Finally, by definiton of
the injective structure on sPsh(®), and by Propositions 9.3.1.(1) and 9.3.2.(1) in loc.cit., the pair of adjoint

functors
const

B>
'_

wn

%
n
=
)

is a QUILLEN pair, so const preserve homotopy colimits (by Theorem 19.4.5.(1) in loc.cit.). So in particular
(using Proposition 18.1.6 in loc.cit.) hocolimp 1 ~ const(ND°P) ~ 1 because ND in contractible by Lemma
A.10. Whence the weak equivalence X, — Map(k(P) x X(Q), X). O

Postulate 3

A.12 The third postulate reflect the fact that weak equivalences are the objectwise weak equivalences in the
injective model structure on sPsh(®).

Postulate 4 and Postulate 5

A.13 Suspension functor in sPsh(®). Let @, be the category of bipointed pasting schemes and points-
preserving maps, and similarly let sPsh(®).e denotes the simplicial category of bipointed simplicial presheaves
over O (it is cocomplete, and even a model category according to Proposition 1.1.8 in [12]). Following Para-
graph 4.2.1.11. in [17], we may construct a suspension functor $’ : sPsh(®) — sPsh(®).. by KAN-extending
the suspension operation ko $ : © — Og¢ — sPsh(®)... By construction, this extension restrict (up to a
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canonical isomorphism) to & o $ on the subcategory ® — sPsh(®), which yields the intertwining map.

A.14 Hom-functor as a right adjoint of $'. Still following [17], we oberve that this KAN-extension admits a
right adjoint, which sends the bipointed presheaf (X, a, b) to Homx (a, b) defined by

HomX('xO/ xl)P = Mapoo(ﬂ;/‘:t(P)/ (X/ X0, xl))

where Map,, denotes the simplicial mapping space of bipointed maps.

A.15 Quillen adjunction and pushout preservation. We make the further observation that Hom sends a
map of bipointed fibrant presheaves f : (X, xo, x1) = (Y, yo, ¥1) to the map Homx(xo, x1) — Homy (v, ¥1)
defined objectwise by the postcomposition

fr 1 Mapeo ($'K(P), (X, x0, X1)) = Mapaq ($'k(P), (X, xo, x1))

Which is a fibration (resp. trivial fibration) when f is a fibration (resp. trivial fibration), according to Propo-
sition 9.3.1.(2) (resp. 9.3.2.(2)) in [11]. Hence, the adjunct pair ($’ < Hom) is a QUILLEN pair according to
Proposition 8.5.3 in loc.cit. Such a QUILLEN adjunction should yield the right notion of adjunction up to
homotopy, and also ensures that $’ : sPsh(®) — sPsh(®).e preserve homotopy colimits.

Postulate 6

A.16 If [X] is a (fibrant) object of sPsh(®) interpreting a (crisp) type X :: U, then the interpretation of Xp for
some P :: PSis given by [Xp] = Map(&(P), [X]) = [X]p- Howether, because sums are computed object-
wise, the P-cells of a sum are canonically equivalent to the sums of the P-cells (see for instance Paragraph
5.1.2in [19]). Which justify the postulated equivalence.

Postulate 7

A.17 Truncations are computed objectwise. Let X be a fibrant object in sPsh(®), by definition (see 5.5.6.1
in [19]), X is n-truncated iff all the mapping spaces into it are n-truncated as KAN complexes. Note that
this implies that each Xp ~ Map(&(P), X) is n-truncated. And conversely, if each Xp is n-truncated, then
because every other object Y in sPsh(®) is a colimit of representable, the mapping space Map(Y, X) is a
limit of n-truncated KAN complexes, so is n-truncated by Proposition 5.5.6.5 in loc.cit. As a consequence,
truncations may be computed objectwise.

A.18 Effective epimorphisms in sPsh(®). According to Proposition 7.2.1.14 in [19], an effective epimor-
phism in sPsh(®) is the same as an effective epimorphism in its underlying 1-topos, which is given by its
homotopy category according to 5.5.6.2 in loc.cit., that is ®, where the truncation is computed objectwise.
Moreover, we know that effective epimorphisms coincide with epimorphisms in a 1-topos, and more pre-
cisely to objectwise surjections in the case of ©.

A.19 Semantic of Coverage. Recall that PS is interpreted as a constant, set valued presheaf. So if X is
the presheaf modeling the type A of Postulate 7, then the sum } p..ps Y .., &P will be interpreted as the

coproduct
I Xpx&XP)
PeOb(O)

Then the map [ pcop@) Xp X &(P) — X will be an effective epimorphism iff all maps

mo(Xp) x Homg(Q, P) — mo(Xq)  (Q € Ob(O))
PeOb(0O)

are surjective. Indeed, this is implied by surjectivity of the Q-th component

ﬂQ(XQ) X Hom@(Q, Q) — ﬂo(XQ)

So this motivate our postulate of } p.ps } .4, &P — A being an effective epimorphism, assuming the type
theoretic effective epimorphisms to indeed be modeled by effective epmorphisms in the higher categorical
semantic.

34



References

[1] nlab entry: (oo, 1)-local geometric morphism. https://ncatlab.org/nlab/show/%28%E2%88%9E%
2Cl1%29-1local+geometric+morphism.

[2] D. ARA, Sur les infini-groupoides de Grothendieck et une variante infini-catégorique, PhD thesis, 2010. These
de doctorat dirigée par Maltsiniotis, Georges Mathématiques Paris 7 2010.

[3] M. E. ATIYAH, Topological quantum field theory, Publications Mathématiques de I'THES, 68 (1988),
pp. 175-186.

[4] J. C. BAEZ, Quantum quandaries: a category-theoretic perspective, 2004.

[5] C. BERGER, Iterated wreath product of the simplex category and iterated loop spaces, Advances in Mathemat-
ics, 213 (2007), p. 230-270.

[6] J. E. BERGNER AND C. REZK, Reedy categories and the 6-construction, 2012.
[7] U. BUCHHOLTZ, F. VAN DOORN, AND E. RIJKE, Higher groups in homotopy type theory, 2018.

[8] D.-C. CISINSKI AND G. MALTSINIOTIS, La catégorie © de joyal est une catégorie test, Journal of Pure and
Applied Algebra, 215 (2011), pp. 962-982.

[9] L. FajsTRUP, E. GOUBAULT, E. HAUCOURT, S. MIMRAM, AND M. RAUSSEN, Directed algebraic topology
and concurrency, vol. 138, Springer, 2016.

[10] A. GROTHENDIECK, Pursuing stacks, 1984.
[11] P. S. HIRSCHHORN, Model categories and their localizations, American Mathematical Society, 2003.
[12] M. HOVEY, Model Categories, American Mathematical Society, 1999.

[13] P. T. JOHNSTONE AND I. MOERDIJK, Local maps of toposes, Proceedings of the London Mathematical
Society, s3-58 (1989), pp. 281-305.

[14] A.JOYAL, Disks, duality and 6-categories, 1997. Unpublished note: https://ncatlab.org/nlab/
files/JoyalThetaCategories.pdf.

[15] D. M. KAN, Abstract homotopy, Proceedings of the National Academy of Sciences, 41 (1955), pp. 1092—
1096.

[16] ——, A combinatorial definition of homotopy groups, Annals of Mathematics, 67 (1958), pp. 282-312.
[17] E. LOUBATON, Theory and models of (oo, w)-categories, 2023.

[18] P. L. LUMSDAINE AND M. SHULMAN, Semantics of higher inductive types, Mathematical Proceedings of
the Cambridge Philosophical Society, 169 (2019), p. 159-208.

[19] J. LURIE, Higher topos theory, 2008.

[20] P. R. NORTH, Towards a directed homotopy type theory, Electronic Notes in Theoretical Computer Science,
347 (2019), pp. 223-239.

[21] P. W. O’'HEARN AND D. J. PYM, The logic of bunched implications, Bulletin of Symbolic Logic, 5 (1999),
p. 215-244.

[22] H. PERRY AND H. KUEN-BANG, A note on left adjoints preserving colimits in hott, 2025. unpublished
work: https://hott-uf.github.io/2025/abstracts/HoTTUF_2025_paper_9.pdf.

[23] T. PORTER, Letter to grothendieck, 1983. https://ncatlab.org/nlab/files/16-06-1983.pdf.
[24] C. REZK, A cartesian presentation of weak n-categories, Geometry and Topology, 14 (2010), p. 521-571.
[25] E. RIEHL AND M. SHULMAN, A type theory for synthetic co-categories, 2023.

[26] M. RILEY, A bunched homotopy type theory for synthetic stable homotopy theory, 2022. Ph.D. Thesis.

35


https://ncatlab.org/nlab/show/%28%E2%88%9E%2C1%29-local+geometric+morphism
https://ncatlab.org/nlab/show/%28%E2%88%9E%2C1%29-local+geometric+morphism
https://ncatlab.org/nlab/files/JoyalThetaCategories.pdf
https://ncatlab.org/nlab/files/JoyalThetaCategories.pdf
https://hott-uf.github.io/2025/abstracts/HoTTUF_2025_paper_9.pdf
https://ncatlab.org/nlab/files/16-06-1983.pdf

[27] U. SHOEPP, Names and binding in type theory, 2003. Ph.D. Thesis.
[28] M. SHULMAN, The univalence axiom for elegant reedy presheaves, 2015.

[29] , Brouwer’s fixed-point theorem in real-cohesive homotopy type theory, 2017.

[30] THE UNIVALENT FOUNDATIONS PROGRAM, Homotopy Type Theory: Univalent Foundations of Mathemat-
ics, https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

[31] B. VAN DEN BERG AND R. GARNER, Types are weak w-groupoids, Proceedings of the London Mathemat-
ical Society, 102 (2010), p. 370-394.

[32] V. VOEVODSKY, Univalent foundations project, nsf grant application, 2010.

36


https://homotopytypetheory.org/book

	Introduction
	Main Ideas
	The Category 
	The Type Theory
	(,)-Categories
	Some Results
	The Subuniverse of Codiscrete Types
	(,n)-Categories
	Directed Homotopy
	Perspectives and Conclusion
	Semantics of CellTT

