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Abstract
Homotopy type theory comes equipped with a canonical semantics

in which types are interpreted as ∞-groupoids. Over the recent
years, a series of works have started extending this approach in

order to reach a setting in which types can be more generally in-

terpreted as higher categories. In particular, Riehl and Shulman

have introduced the simplicial type theory which can be modeled

in simplicial spaces, where (∞, 1)-categories can be characterized

as those satisfying two properties, namely Segalness and complete-

ness. Here, we follow a similar path, and introduce a type theory

with models in cellular spaces (space-valued presheaves over the

category Θ), where we have a notion of (∞, 𝜔)-category by impos-

ing two similar conditions, following the ideas of Joyal, Rezk and

Berger. More precisely, our type theory postulates a category of

pasting schemes (which formally axiomatizes the category Θ) and
a Yoneda embedding (which ensures that types behave as cellular

spaces). Axiomatizing this requires us to be able to consider the

underlying spaces of cellular spaces: this is made possible thanks

to the presence of a comodality ♭, reminiscent of Shulman’s crisp

type theory. We introduce a notion of (∞, 𝜔)-category in this set-

ting and illustrate the applicability of our approach by showing

various results on those, such as the fact that they are stable under

taking sums, finite limits or homs, or that representable types are

categories. We also provide, in appendix, a semantics justifying the

pertinence of our axioms.

CCS Concepts
• Theory of computation→ Constructive mathematics; Type
theory.

1 Introduction
1.1 Homotopy and type theory
The investigation of Martin-Löf’s intentional type theory [44] has

revealed that identity types can bear non-trivial information, in the

sense that two proofs of equality are not necessarily themselves

equal. This observation was first formalized by Hofmann and Stre-

icher [30] by constructing a model, where contexts are interpreted

as groupoids, which does not validate the principle of uniqueness

of identity proofs. Later on, Voevodsky and collaborators have in-

troduced homotopy type theory [59], based on a new axiom, called

univalence, validated in a model where contexts are interpreted

as spaces (impersonated by simplicial sets) up to homotopy [33]:

this followed pioneering work interpreting dependent type the-

ory with identity types in model categories [4, 21], and formalizes

the intuition that a type corresponds to a space, a term to a point

in this space, a proof of equality to a path, a proof of equality be-

tween equalities as a homotopy between paths, and so on. This later

model generalizes the groupoid model, in the sense that, under the

Grothendieck hypothesis [27], spaces correspond to∞-groupoids, a
variant of the notion of groupoid comprising higher cells and where

all structural axioms only hold up to higher coherence cells, which

should themselves satisfy coherence laws up. More precisely, types

in Voevodsky’s model are interpreted as Kan complexes, which can

be taken as a definition for∞-groupoids in the simplicial setting.

Moreover, it was observed early on that identities equip types in

intentional type theory with a structure of∞-groupoid [12, 40, 60]

in the sense of Grothendieck-Batanin-Leinster [6, 27, 36].

The type theory obtained by adding the univalence axiom is

called homotopy type theory because it allows to reason in a syn-

thetic way on homotopy types. Formalizing geometric construc-

tions in this setting is interesting for multiple reasons: the resulting

proofs can be fully detailed and checked in proof assistants such as

Agda or Rocq, all manipulations performed there are invariant up to

homotopy by construction, and they automatically generalize to all

the models of the type theory such as those which can be found in

∞-toposes [58]. Important results have been now formalized in this

setting such as the computation of the 4-th homotopy group of the

2-sphere [12, 38], the Blakers-Massey theorem [2], the stabilization

of higher groups [13], and so on.

1.2 Directed homotopy type theory
More generally than modeling∞-groupoids, one would like to have
a variant of type theory where types are (∞, 𝑛)-categories, i.e. weak
categories in which morphisms are only invertible starting from di-

mension 𝑛, with 𝑛 possibly being𝜔 , in which case we do not require

any morphism to be invertible. These structures appear naturally in

category theory: for instance, the collection of∞-groupoids forms

an (∞, 1)-category. On the topological side, (∞, 1)-categories arise
as fundamental categories of directed spaces [20], which are vari-

ants of the notion of fundamental group adapted to a setting where

topological space are equipped with a notion of “time direction”

which allows identifying, among paths, the ones that should be

considered as being properly directed.

From this perspective has emerged the hope for a directed type
theory, which would allow to synthetically consider higher cate-

gories. Early on, it was observed that one cannot expect such a

theory to be defined as a simple variant of dependent type theory.

One reason is that models of such a theory would have to be locally

cartesian closed categories, a property which is not satisfied by the

category of 1-categories (exponentiable functors can be character-

ized as those being Conduché fibrations [19, 22]), nor by higher

categories (for similar reasons). This means the naive hope that

one could come up with a variant of the rules for identity types

which would allow for taking in account directed morphisms is

doomed to fail. This however does not prevent one from crafting
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more creative type theories with dedicated construction in order to

handle directed morphisms, and various investigations have been

made in this direction. A type theory which can be interpreted in

(strict) 2-categories is proposed in [37], and a variant adapted to

bicategories is introduced in [1]: the 1-cells there correspond to

reductions of terms, and the syntax internalizes the operations and

axioms expected to be satisfied in the bicategorical semantics. A

type theory closer to traditional intentional type theory and featur-

ing a form of transport is proposed in [45], where the type theory

is extended with a “core” modality as well as a dualizing operation,

and interpreted in the category of small categories, see also [46, 62]

for related approaches.

More recently, Riehl and Shulman [52] have introduced simpli-
cial type theory, which is a type theory adapted to (∞, 1)-categories,
whose starting point is the introduction of a type corresponding

to a directed interval. The manipulations there are not entirely

synthetic, in the sense that types are not always to be interpreted as

(∞, 1)-categories, but rather as simplicial spaces, among which we

can identify categories as complete Segal types, which can roughly

be described as types supporting composition and in which paths

correspond to equivalences. This means that, when defining opera-

tions on categories, one should always make sure that the result

actually is a category (as opposed to homotopy type theory where

we can implicitly suppose that all operations preserve being an

∞-groupoid). Nevertheless, many recent developments using this

type theory have shown its applicability for reasoning in a concise

and formal way about (∞, 1)-categories [14, 25, 26, 63, 64]. We note

that, in order to make the type theory useful in practice, it is often

extended with a modality ♭ (and possibly more modalities, based on

crisp type theory [57] or the multimodal extension of intentional

type theory [24]) which can semantically be interpreted as taking

the core of a type, i.e. keeping only its weakly invertible morphisms.

This kind of approach in homotopy type theory originates in the

work of Shulman who introduced crisp type theory [57], and is also

expected to play an important role in the current axiomatization of

higher categories by Cisinski and collaborators [17].

1.3 A fully directed type theory
This work constitutes a first step toward the generalization of the

previous work toward a type theory which is “fully directed”, in

the sense that our type theory contains types which can be iden-

tified to (∞, 𝜔)-categories, i.e. weak higher categories, where no

cell is supposed to be invertible. Semantically, our starting point

compared to simplicial type theory consists in replacing simplicial

spaces by Θ-spaces. We recall that the category Θ, due to Joyal [32],
is the category whose objects are pasting schemes (i.e. formal com-

posites of globes) and morphisms are functors between them. One

can then consider cellular spaces, which are presheaves enriched

in spaces over Θ, and isolate Θ-spaces as being cellular spaces 𝐴

which satisfy a Segal-type condition (given a pasting scheme 𝑃 , the

canonical map from the space 𝐴𝑃 to the canonical fibered product

of spaces 𝐴𝑃𝑖 should be a weak equivalence) and a completeness

condition (paths in spaces correspond to equivalences). These were

introduced by Rezk as a model for (∞, 𝜔)-categories [50, 51]. In the

original definition, the notion of “space” there is axiomatized by

simplicial sets equipped with the Quillen model structure. In fact, by

restricting to 𝑛-dimensional pasting schemes, one obtains a notion

of (∞, 𝑛)-category which, for 𝑛 = 1, coincides with Segal spaces (in

particular Θ1 is the simplicial category Δ). It is thus tempting to

try to generalize simplicial type theory in order to accommodate

for cellular spaces: this is precisely the objective of the present

work. This generalization is not immediate: simplicial type theory

is based on a layer of topes which allows considering subshapes

of cubes in which one can encode the simplicial machinery, but

there is no obvious generalization at our disposal in order to encode

the category Θ, which must therefore be added axiomatically. In

particular, simplicial type theory features a directed interval type I,
so that 1-cells in a type 𝐴 correspond to maps I → 𝐴, 2-cells to

maps I2 → 𝐴 and so on. This approach would not work in the fully

directed case: all the𝑚-cells of I𝑛 are reversible for𝑚 > 1 and 𝑛 > 1,

and thus maps I𝑛 → 𝐴 only detect reversible 𝑛-cells in 𝐴.

1.4 Cellular type theory
Our type theory results from several successive extensions of ho-

motopy type theory. We first formally add a type corresponding to

pasting schemes in the type theory, which is made possible thanks

to the nice combinatorial structure governing the category Θ. In a

second time, interpreting all our types as cellular presheaves, we ax-

iomatize the Yoneda embedding of Θ into types, which should give

us access to the spaces of cells in the types by the Yoneda lemma.

In order for this to be possible, we need to have access to a notion

of space, whereas our types are meant to be cellular spaces: this

motivates the introduction of a modality ♭ which restricts a cellular

space to the underlying space, following the principles of crisp type

theory [57]. We claim that the resulting type theoretic framework is

suitable for working synthetically with cellular spaces: in order to

support this, we define weak higher categories and perform several

constructions with them.

1.5 Plan of the paper
We begin by recalling categorical definitions around the Θ cate-

gory and cellular spaces (Section 2), we then introduce our type

theoretic setting obtained by adding axioms to intuitionistic type

theory (Section 3), and finally we define and study higher categories

(Section 4): in particular, we show that discrete types are categories

(Section 4.3), that the homotopy level of a type is determined point-

wise (Section 4.4), that categories are closed under taking homs

(Section 4.5), that representable types are categories (Section 4.6)

and that categories are stable under finite limits and coproducts

(Section 4.7).

All the proofs omitted in the article can be found in Section A.

The semantics of our type theory is detailed in Section B and we pro-

vide extensions about codiscrete types (Section C) and (∞, 𝑛)-cate-
gories (Section D).

2 The category Θ
We recall the definition of the category Θ due to Joyal [32], see

also [8, 18, 43]. Many of the results in this section have been for-

malized in [35].
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2.1 The simplicial and interval categories
We first need to fix some notations and recall basic constructions.

Given a natural number 𝑛, we write [𝑛] for the (totally ordered)

set {0, 1, . . . , 𝑛}. The simplicial category Δ is the category whose ob-

jects are the natural numbers and where a morphism 𝑓 :𝑚 → 𝑛 is

a non-decreasing function [𝑚] → [𝑛]. A simplicial set is a presheaf
over this category. We recall that there is a standard model structure

on the category Δ̂ of simplicial sets, often called the Kan-Quillen

model structure, whose weak equivalences are the morphisms in-

ducing weak equivalences of topological spaces on the geometric

realizations and whose cofibrations are the monomorphisms [23].

Trivial fibrations are generated by horn inclusions, so that fibrant

objects are precisely Kan complexes.

The category of intervals I is the category whose objects are

natural numbers and morphisms 𝑓 : 𝑚 → 𝑛 are non-decreasing

functions [𝑚 + 1] → [𝑛 + 1] which preserve the minimal and the

maximal elements. There is an isomorphism Δ
∼→ Iop which sends

an object 𝑛 to 𝑛 (i.e. [𝑛] to [𝑛 + 1]) and sends a map 𝑓 : [𝑚] → [𝑛]
to the map 𝑓 ∨ : [𝑛 + 1] → [𝑚 + 1] with is defined on 𝑖 ∈ [𝑛 + 1]
by 𝑓 ∨ (𝑖) = min{ 𝑗 ∈ [𝑚 + 1] | 𝑓 ( 𝑗) ≥ 𝑖}, see [32] for details. For
instance, consider the following map 3→ 4 in Δ:

0 1 2 3

0 1 2 3 4

(1)

It corresponds to the following map in Iop:

0 1 2 3 4

0 1 2 3 4 5

(2)

Intuitively, one can see an element 𝑖 in (2) as corresponding to the

interval between the elements (𝑖 − 1) and 𝑖 in (1). We can indeed

superimpose the map (1) (in dotted) with the map (2) as follows:

0 1 2 3 4

0 1 2 3 4 5

0 1 2 3

0 1 2 3 4

Moreover, the minimal and maximal elements correspond to the

semi-infinite interval on the left and on the right respectively, which

explains intuitively why we will consider them as “undefined” val-

ues in the definition of morphisms in Θ below.

2.2 Pasting schemes
We define the set of pasting schemes as the smallest set closed under

formal products of arbitrary finite arity: this means that for every

natural number 𝑛 and pasting schemes 𝑃1, . . . , 𝑃𝑛 , we have a pasting

scheme [𝑃1, . . . , 𝑃𝑛] corresponding to their formal product. More

formally, pasting schemes are the initial algebra of the polynomial

functor 𝑋 ↦→ ⊔
𝑛∈N 𝑋𝑛

on Set. Alternatively, pasting schemes can

also be thought of as finite planar trees, sometimes called Batanin

trees [6, 7]. For instance, the tree corresponding to

the pasting scheme [[[[]]], [], [[], []]] is pictured
on the right. Note that this tree is essentially the

syntax tree of the expression corresponding to the

pasting scheme, which should help understanding

the correspondence between the two representations.

In the following, given a natural number 𝑛, we write O𝑛 for the

𝑛-disk pasting scheme [[· · · [] · · · ]] obtained by applying 𝑛 times

[−] to [], and we write [𝑛] for the pasting scheme [[], [], . . . , []],
with 𝑛 copies of []. The dimension dim(𝑃) of a pasting scheme 𝑃 is

the depth of the corresponding planar tree: it can be defined induc-

tively by dim( [𝑃0, . . . , 𝑃𝑛]) = 1+max𝑖 dim(𝑃𝑖 ) with the convention
dim( []) = 0.

2.3 Globular sets
We write G for the category whose objects are natural numbers

and morphisms are generated by 𝑠𝑛, 𝑡𝑛 : 𝑛 → 𝑛 + 1 for 𝑛 ∈ N,
respectively called source and target maps, subject to the relations

𝑠𝑛+1◦𝑠𝑛 = 𝑡𝑛+1◦𝑠𝑛 and 𝑠𝑛+1◦𝑡𝑛 = 𝑡𝑛+1◦𝑡𝑛 for 𝑛 ∈ N. We write
ˆG for

the category of presheaves over G, whose objects are also known

as globular sets. Given 𝐺 ∈ ˆG and an object 𝑛 ∈ G, we write 𝐺𝑛

for the set obtained as the image of 𝑛 under 𝐺 , whose elements are

called 𝑛-cells, and 𝑠𝐺𝑛 , 𝑡
𝐺
𝑛 : 𝐺𝑛+1 → 𝐺𝑛 for the respective images of

the morphisms 𝑠𝑛 and 𝑡𝑛 . We write 1 for the the globular set with

one 0-cell ⋆ and no cell of higher dimension (this is not the terminal

one).

A bipointed globular set is a globular set𝐺 equippedwith two dis-

tinguished 0-cells, or equivalently with twomaps left, right : 1→ 𝐺 .

We write
ˆG�� for the corresponding category, with maps preserving

distinguished elements. The forgetful functor
ˆG�� → ˆG admits a

left adjoint S :
ˆG → ˆG��, called suspension, sending a globular set 𝐺

to the globular set S𝐺 defined by (S𝐺)0 ≡ {−,+} (with − and +
as distinguished 0-cells) and (S𝐺)𝑛+1 ≡ 𝐺𝑛 with source and target

maps given by 𝑠S𝐺
0
(𝑥) ≡ −, 𝑡S𝐺

0
(𝑥) ≡ +, 𝑠S𝐺

𝑛+1 ≡ 𝑠𝐺𝑛 and 𝑡S𝐺
𝑛+1 ≡ 𝑡𝐺𝑛 .

Any pasting scheme induces a globular set 𝑃 G defined induc-

tively by []G ≡ 1 and [𝑃1, . . . , 𝑃𝑛]G is the colimit of the diagram

S𝑃∗
1

1 S𝑃∗
2

1 . . . 1 S𝑃∗𝑛
𝜄+ 𝜄− 𝜄+ 𝜄− 𝜄+ 𝜄−

For instance, we have

[[[[]]], [], [[], []]]G = · · · ·

We write Cat𝜔 for the category of (strict) 𝜔-categories, which

are globular sets equipped with identities and compositions satis-

fying suitable axioms. By general results about locally presentable

categories [5, Theorem 3.5], the forgetful functorCat𝜔 → ˆG admits

a left adjoint, constructing the free 𝜔-category on a globular set.

Given a pasting scheme 𝑃 , we write 𝑃∗ for the free 𝜔-category on

the globular set 𝑃 G .

2.4 The category Θ
The category Θ is defined as the full subcategory of Cat𝜔 whose

objects are of the form 𝑃∗ for some pasting scheme 𝑃 [32]. The

operation −∗ on pasting schemes is injective [7, 8] so that we may

safely refer to an object of Θ as a pasting scheme. Given a natural

number 𝑛, the category Θ𝑛 is obtained by restricting Θ to pasting

schemes of dimension at most 𝑛, so that Θ can be recovered as the

inductive limit of the Θ𝑛 . In particular, for 𝑛 = 1, the category Θ1

coincides with the simplicial category Δ.
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The category Θ𝑛+1 can be recovered from Θ𝑛 as the wreath

product Δ ≀ Θ𝑛 , see [8]. This means that we have the following

inductive description of the morphisms of Θ:

Definition 1. The category Θ is the category where an object is a

pasting scheme and a morphism 𝑓 : [𝑃1, . . . , 𝑃𝑛] → [𝑄1, . . . , 𝑄𝑛]
consists of

– a map 𝑓 :𝑚 → 𝑛 in Δ,
– for every 𝑖 ∈ [𝑛 + 1] such that 0 < 𝑓 ∨ (𝑖) < 𝑚 + 1, a map

𝑓𝑖 : 𝑃𝑓 ∨ (𝑖 ) → 𝑄𝑖 .

Identities and composition are induced by those in Δ and Θ (recur-

sively).

For instance, we have 𝑓 : [𝑃1, 𝑃2, 𝑃3] → [𝑄1, 𝑄2, 𝑄3, 𝑄4] induced by
the function 𝑓 of (1) and the morphisms 𝑓2 : 𝑃2 → 𝑄2, 𝑓3 : 𝑃2 → 𝑄3

and 𝑓4 : 𝑃3 → 𝑄4. This can be pictured as follows:

0 1 2 3 [3]

0 1 2 3 4 [4]

𝑃1 𝑃2 𝑃3

𝑓

𝑄1 𝑄2 𝑄3 𝑄4

𝑓2 𝑓3 𝑓4

The above description should convince the reader that we can imple-

ment data structures in order to describe objects and morphisms of

the category Θ. More precisely, both the objects and the morphisms

of this category can be described as inductive types.

A morphism 𝑓 : 𝑃 → 𝑄 is bipointed when 𝑃 and 𝑄 are both

different from [] and the underlying function in Δ preserves the

endpoints, i.e. belongs to I. We write Θ�� for the subcategory of Θ
with all pasting schemes excepting [] as objects and bipointed

morphisms. We write 𝜎𝑖 : N→ {0, 1} for the “step” function such

that 𝜎𝑖 ( 𝑗) = 0 for 𝑗 < 𝑖 and 𝜎𝑖 ( 𝑗) = 1 otherwise. The following

lemma follows immediately from the definition of Θ��:

Lemma 2. Given pasting schemes 𝑃 ≡ [𝑃1, . . . , 𝑃𝑛] and 𝑄 , the mor-
phisms 𝑓 : [𝑃1, . . . , 𝑃𝑛] → [𝑄] which are bipointed are of the form
(𝜎𝑖 , (𝑓𝑖 )) for some 𝑖 with 0 < 𝑖 ≤ 𝑛 and morphism 𝑓𝑖 : 𝑃𝑖 → 𝑄 .
Graphically,

· · · · · ·

· ·

𝑃𝑖

𝑄

𝑓𝑖

2.5 Operations in Θ
2.5.1 Source and target. Given a pasting scheme 𝑃 there are two

canonical maps left, right : [] → 𝑃 whose underlying map in Δ is

the map [0] → [𝑛] respectively sending 0 to 0 and 𝑛. For instance,

for 𝑃 ≡ [𝑃1, 𝑃2, 𝑃3] those maps can respectively be pictured as

left ≡
0

0 1 2 3
𝑃1 𝑃2 𝑃3

right ≡
0

0 1 2 3
𝑃1 𝑃2 𝑃3

Thanks to these maps, any pasting scheme can canonically be con-

sidered as being bipointed.

Given 𝑘 ∈ N, any pasting scheme 𝑃 induces a pasting scheme

𝜕𝑘𝑃 , its 𝑘-dimensional boundary, along with boundary morphisms

src
𝑘
𝑃
, tgt𝑘

𝑃
: 𝜕𝑘𝑃 → 𝑃 , the source and target maps, defined by induc-

tion on 𝑘 as follows. In the base case, we define 𝜕0𝑃 ≡ [] with

src
0

𝑃
≡ left and tgt

0

𝑃
≡ right. In the inductive case, we define

𝜕𝑘+1 [𝑃1, . . . , 𝑃𝑛] ≡ [𝜕𝑘𝑃1, . . . , 𝜕𝑘𝑃𝑛] with
src

𝑘+1
[𝑃1,...,𝑃𝑛 ] = (id𝑛, (src

𝑘
𝑃𝑖
)1≤𝑖≤𝑛) tgt

𝑘+1
[𝑃1,...,𝑃𝑛 ] = (id𝑛, (tgt

𝑘
𝑃𝑖
)1≤𝑖≤𝑛)

We simply write 𝜕𝑃 for 𝜕dim𝑃−1
, when dim 𝑃 > 0, and similarly

for src
𝑃
and tgt

𝑃
. For instance, for 𝑃 = [[[[]]], [], [[], []]], the

map src
1

𝑃
: 𝜕1𝑃 → 𝑃 corresponds to the inclusion of globular sets

depicted below:

· · · · 𝜕1𝑃

· · · · 𝑃

src
1

𝑃

src
0

src
0

src
0

It can be observed that any pasting scheme is “acyclic”, in the

sense that if it contains two cells in opposite directions then those

are equal.

Lemma 3. Suppose given a pasting scheme 𝑃 together with two mor-
phisms𝑎, 𝑏 : O𝑛+1 →PS 𝑃 such that𝑎◦src = 𝑏◦tgt and𝑏◦src = 𝑎◦tgt.
Then 𝑎 ◦ src = 𝑎 ◦ tgt and 𝑎 = 𝑏.

2.5.2 Inclusion and retraction. Suppose given a pasting scheme

𝑃 ≡ [𝑃1, . . . , 𝑃𝑛]. We have, for any index 𝑖 , a pair of morphisms

⊆𝑖 : [𝑃𝑖 ] → 𝑃 and 𝜋𝑖 : 𝑃 → [𝑃𝑖 ] forming a section-retraction pair,

i.e. 𝜋𝑖 ◦ ⊆𝑖 = id[𝑃𝑖 ] . Those are defined by

⊆𝑖 ≡
(
𝑗 ↦→ 𝑖 + 𝑗 − 1, (id𝑃𝑖 )

)
𝜋𝑖 ≡

(
𝜎𝑖 , (id𝑃𝑖 )

)
and can respectively be illustrated as follows:

· ·

· · · · · ·

𝑃𝑖

𝑃𝑖

id𝑃𝑖

· · · · · ·

· ·

𝑃𝑖

𝑃𝑖

id𝑃𝑖

2.5.3 Suspension. The operation which to a pasting scheme 𝑃

associates [𝑃] extends as a functor S : Θ→ Θ��, called suspension. It
is defined on objects by S𝑃 ≡ [𝑃] and, given a morphism 𝑓 : 𝑃 → 𝑄 ,

the morphism S𝑓 : [𝑃] → [𝑄] is the function consisting of the

identity id : 1→ 1 in Δ and the morphism 𝑓 .

2.5.4 Wedge sum. Given two pasting schemes 𝑃 ≡ [𝑃1, . . . , 𝑃𝑛]
and𝑄 ≡ [𝑄1, . . . , 𝑄𝑚] their wedge sum 𝑃 ∨𝑄 is the pasting scheme

[𝑃1, . . . , 𝑃𝑛, 𝑄1, . . . , 𝑄𝑚] corresponding to the concatenation of lists.

2.6 Cellular spaces and categories
2.6.1 Cellular spaces. A cellular space 𝑋 is a simplicial presheaf

over the categoryΘ, i.e. a mapΘ→ Δ̂, which is fibrant with respect
to the injective model structure, where Δ̂ is equipped with the Kan-

Quillen model structure. Given 𝑃 ∈ Θ, we write 𝑋𝑃 for the image

of 𝑃 under 𝑋 : an object of 𝑋𝑃 is sometimes called a 𝑃-cell of 𝑋 . The

category Θ can be shown to be an elegant Reedy category so that

the injective and Reedy model structures on it coincide [9].

Alternatively, the Kan-Quillen model structure on simplicial sets

can be thought of as presenting the∞-category S of spaces, whose
objects are∞-groupoids, impersonated here by Kan complexes [42,

Section 1.2.16]. With this perspective, the cellular spaces are the ob-

jects of the∞-category Psh(Θ) ≡ Fun(Θop,S) of spatial presheaves
overΘ, see [42, Section 5.1] for details. As for any presheaf category,
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we have a Yoneda embeddingよ : Θ → PshΘ [42, Section 5.1.3].

We can define a suspension operation on cellular spaces as the left

Kan extension of the functorよ ◦ S alongよ, which we still write

as S : Psh(Θ) → Psh(Θ). This operation actually defines a func-

tor from Psh(Θ) to the category Psh(Θ)�� of bipointed presheaves

(equipped with two distinguished []-cells), see [47, Section 4.2],

which preserves colimits. The cells of the suspension can be char-

acterized as follows:

Proposition 4. Given a cellular space 𝑋 and a pasting scheme
𝑃 ≡ [𝑃1, . . . , 𝑃𝑛], we have (S𝑋 )𝑃 = 1 +∑𝑖 𝑋𝑃𝑖 + 1.

Simple combinatorics using the definitions of morphisms in Θ im-

plies the following result, that will be needed in 4.6:

Lemma 5. If the square on the left is a pushout in Θ, then so is the
one on the right.

𝐴 𝐵2

𝐵1 𝐶

𝑓1

𝑓2

⌜
𝑔2

𝑔1

S𝐴 S𝐵2

S𝐵1 S𝐶

S𝑓1

S𝑓2

⌜
S𝑔2

S𝑔1

Lemma 6. Given a pasting scheme 𝑃 ≡ [𝑃1, · · · , 𝑃𝑚], the following
cocone in Θ is colimiting:

O𝑛 O𝑛 . . . O𝑛

S
𝑛+1𝑃1 S

𝑛+1𝑃2 S
𝑛+1𝑃𝑚

S
𝑛𝑃S

𝑛⊆1

S
𝑛⊆2

S
𝑛⊆𝑚

Proof. By unfolding Definition 1, we see that the cocone for 𝑛 = 0

is colimiting, and deduce the general result by using Lemma 5. □

2.6.2 Θ-spaces. A cellular space 𝐴 is a Θ-space when moreover

– it satisfies the Segal condition: for every pasting schemes 𝑃

and 𝑄 and 𝑛 ≥ 0, the canonical map

𝐴S
𝑛 (𝑃∨𝑄 ) → 𝐴S

𝑛𝑃 ×𝐴𝑘
𝐴S

𝑛𝑄

is an equivalence,

– it satisfies the completeness condition: for every dimension 𝑛,

the canonical map from 𝑛-cells to (𝑛+1)-equivalences is a
weak equivalence.

The Θ-spaces have been advocated as being a good notion of

(∞, 𝜔)-category [3, 10, 11, 50, 51]. They are the fibrant objects of a

model structure on the category of simplicial presheaves overΘ [50].

An alternative definition of the notion of Θ-space, closer to the one
that we use subsequently, can be found in [39, Section 4.2.1.6].

3 Type theoretic setting
We consider a type theory based on homotopy type theory, by

which we mean intuitionistic type theory [44] together with the

univalence axiom [59]. More precisely, we suppose that our theory

features dependent sums, dependent products, identity types and

a countable hierarchy of univalent universes. We also suppose

that we have access to the usual basic data types (the terminal

type, booleans, natural numbers, lists, etc.) as well as homotopy

pushouts (this is in particular satisfied if we assume that we have

all higher inductive types) so that we have all finite colimits. In

addition to this now fairly standard material, we suppose that our

type theory is spatial (in the sense that it features a modality ♭

as explained below) and that we have types corresponding to the

objects and hom-sets of the category Θ. Although we cannot recall

all the standard rules in details here, we at least need to fix some

notations, before introducing our axioms.

3.1 Notations
Given ℓ ∈ N, we writeUℓ for the universe at level ℓ , or simplyU
when size issues can easily be handled. A context Γ is a finite list

𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 of pairs consisting of a variable and a type. We

write Γ ⊢ 𝑡 : 𝐴 for the judgment indicating that 𝑡 is a term of type𝐴

in the context Γ. In particular, a judgment of the form Γ ⊢ 𝐴 : U
means that𝐴 is a type. Given a type𝐴 and a type family 𝐵 : 𝐴→U,

we write Σ(𝑥 : 𝐴) .𝐵(𝑥) (resp. Π(𝑥 : 𝐴) .𝐵(𝑥) or (𝑥 : 𝐴) → 𝐵(𝑥))
for dependent sum and dependent product types. Given two types 𝐴

and 𝐵, we write 𝐴 × 𝐵 and 𝐴 → 𝐵 for their product and arrow
types, which are particular non-dependent cases of the previous

ones; we also write𝐴⊔𝐵 or𝐴+𝐵 for their coproduct. The terminal
type is noted 1 and its canonical element is noted ⋆. Given two

terms 𝑡 and 𝑢 of common type 𝐴, we write 𝑡 =𝐴 𝑢 (or simply 𝑡 = 𝑢)

for the type of identities or paths between them. Among those,

we distinguish definitional equalities which are denoted 𝑡 ≡ 𝑢. A

morphism 𝑓 : 𝐴 → 𝐵 is called an equivalence when it has both

a left and a right inverse, we write isEquiv(𝑓 ) for the predicate

indicating that 𝑓 is an equivalence and we write 𝐴 ≃ 𝐵 for the type

of equivalences between 𝐴 and 𝐵. The univalence axiom states that

the canonical map (𝐴 = 𝐵) → (𝐴 ≃ 𝐵) is an equivalence for every

types 𝐴 and 𝐵.

A type 𝐴 is contractible (resp. a proposition, resp. a set) when it is

equivalent to 1 (resp. every identity type is contractible, resp. every

identity type is a proposition). We write Prop (resp. Set) for the type

of propositions (resp. sets). One can more generally define a notion

of 𝑛-type so that previous types correspond to the cases where 𝑛 is

−2, −1 and 0. We write ∥−∥𝑛 for the 𝑛-truncation operation, which

formally turns a type into an 𝑛-type.

3.2 Informal semantics
In order to fix ideas, we provide here informally the intended se-

mantics of our type theory in Θ-spaces, a detailed presentation

being given in Section B. This is a particular case of Shulman’s

general construction of a model of univalent type theory in spatial

presheaves over any elegant Reedy category [56]. This interpreta-

tion can be thought of as a generalization of the traditional presheaf

semantics [29, Section 4], replacing presheaves (enriched in sets)

by spatial presheaves (enriched in space). Indeed, presheafs over a

fixed category is canonically equipped with a structure of category

with families, which allows interpreting intuitionistic type theory,

in a way that supports all expected constructions on types.

In our intended interpretation, a context Γ is interpreted as a

presheaf ⟦Γ⟧ ∈ Psh(Θ). In particular, the empty context is inter-

preted as the terminal presheaf. A type in the empty context is

also interpreted as such a presheaf and, more generally, a type 𝐴

in a context Γ is interpreted as a fibration ⟦𝐴⟧ → ⟦Γ⟧. A term 𝑡 of
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type 𝐴 in a context Γ consists of a section ⟦𝑡⟧ of the previous fibra-
tion. The interpretation of the universeU (in the empty context) is

the presheaf in Psh(Θ) sending a pasting scheme 𝑃 to the space of

(appropriately small) fibrations overよ𝑃 .

3.3 Spatial type theory
The presheaf semantics supports other important operations, which

are not reflected (yet) in the syntax. The inclusion 1→ Θ, sending
the object of 1 to the pasting scheme [] (which is the object of

objects) induces, by precomposition, a functor 𝑟 : Psh(Θ) → Psh(1)
restricting a cellular space to its space of objects (the∞-category
Psh(1) is canonically isomorphic to S). This functor admits a left

adjoint 𝑏, sending a space 𝑋 to the constant presheaf equal to 𝑋 .

S Psh(Θ)

𝑏

⊥
𝑟

These functors induce a comonad ♭ on Psh(Θ) which will allow us

to consider spaces (as opposed to cellular spaces), by embedding

them into cellular spaces. For instance, for an arbitrary cellular

space, we want to be able to have access to the space of cells of a

given shape (which is not a cellular space in an interesting way).

The modality ♭ being comonadic, it cannot be expressed directly.

This motivated the introduction of spatial type theory [57], which

axiomatizes this modality: any type 𝐴 induces a type ♭𝐴. In order

to do so, we have to consider contexts containing two kinds of

variables: the crisp ones and the usual (or cohesives) ones. The crisp
variables are more constrained, in the sense that they can only be

substituted by terms of modal type (and their type can only depend

on crisp variables). We write Δ | Γ for a context where the variables

in Δ are the crisp ones. The associated inference rules for ♭ are

Δ | · ⊢ 𝐴 : Type

Δ | Γ ⊢ ♭𝐴
Δ | · ⊢ 𝑡 : 𝐴

Δ | Γ ⊢ 𝑡♭ : ♭𝐴
Δ | Γ, 𝑥 : ♭𝐴 ⊢ 𝐵 : Type

Δ | Γ ⊢ 𝑡 : ♭𝐴 Δ, 𝑦 :: 𝐴 | Γ ⊢ 𝑢 : 𝐵 [𝑦♭/𝑥]
Δ | Γ ⊢ let 𝑦♭ = 𝑡 in 𝑢 : 𝐵 [𝑡/𝑥]

as well as the expected 𝛽-reduction rule. We write 𝑥 :: 𝐴 to indicate

that 𝑥 is supposed to be of type 𝐴 in the crisp part of the context.

The two first rules ensure that modal terms or variables can only

depend on the crisp part of the context, and the last one is such

that a crisp variable can only be substituted by a modal term. Given

a type 𝐴 :: U, we write −♭ : ♭𝐴→ 𝐴 for the canonical map defined

by 𝑥♭ ≡ (let 𝑦♭ = 𝑥 in 𝑦); we say that 𝐴 is discrete when this map is

an equivalence. The ♭ modality is functorial in the sense that every

function 𝑓 :: 𝐴 → 𝐵 induces a function ♭𝑓 : ♭𝐴 → ♭𝐵 defined by

♭𝑓 𝑥 ≡ (let 𝑦♭ = 𝑥 in (𝑓 𝑦)♭). In order to experiment with such a

theory a flat extension of Agda is available [61]. From now on, we

suppose that our type theory is a crisp extension of intuitionistic

theory, as indicated above.

These modalities will be particularly useful when considering

categories below. Given a type 𝐴, the type ♭𝐴 corresponds to re-

stricting to the objects of 𝐴, or considering the global sections. In

particular, when 𝐴 is a category, this will amount to restricting to

the core of𝐴, obtained by keeping only invertible morphisms. With

this point of view in mind, crisp variables can only depend on types

which behave like groupoids, for which we do not have to handle

variance issues (see Section 5 for further discussion on this point).

3.4 Wild categories
In type theory, the structure resulting from the direct translation

of the notion of category is called a wild category [15]: it consists

of a type 𝑂 :: U of morphisms, a family of types of morphisms

𝑀 :: 𝑂×𝑂 →U, compositions and identities, which are associative

and unital. This notion is “wrong” in the sense that we lack the

higher coherences, but still useful in the sense that it approximates

the right notion of ∞-category (which is expected to require an

infinite amount of coherence datum and thus be difficult to for-

mulate). Note that, in the context of spatial type theory, all the

data comprised in wild categories is always assumed to be crisp.

Similarly, the direct translation of the traditional notion of functor

is called a wild functor and the corresponding notion of adjunction

between two functors is called a wild adjunction. We should recall

that some of the expected properties for those do not go through

without additional hypothesis. In particular, wild left adjoints do

not preserve colimits in general unless we suppose that they satisfy

an additional 2-coherence property [49]. Moreover, all the adjunc-

tions considered here will be crisp adjunctions, see [57], by which

we mean that we have functors 𝐿 :: 𝐴→ 𝐵 and 𝑅 :: 𝐵 → 𝐴 together

with isomorphisms ♭(𝐿 𝑎 → 𝑏) ≃ ♭(𝑎 → 𝑅 𝑏) natural in 𝑎 and 𝑏.

3.5 Pasting schemes
As a last important construction built in in our type theory, we

suppose that we have types encoding the category Θ, which we

explained how to handle algorithmically in Section 2. In more de-

tails, this means the following. We first suppose given a type PS of

pasting schemes. If our type theory features inductive types, we

can define PS as an inductive type with one constructor of type

List PS → PS, i.e. a pasting scheme is a list of pasting schemes.

Otherwise, the type PS can be directly axiomatized as a new type

with the expected associated rules:

Δ | Γ ⊢ PS
Δ | Γ ⊢ 𝐿 : List PS

Δ | Γ ⊢ [𝐿] : PS
Δ | Γ, 𝑥 : PS ⊢ 𝐴 : Type

Δ | Γ, 𝐿 : List PS ⊢ 𝑡 : 𝐴[[𝐿]/𝑥] Δ | Γ ⊢ 𝑃 : PS

Δ | Γ ⊢ let [𝐿] = 𝑃 in 𝑡 : 𝐴[𝑃/𝑥]
Δ | Γ, 𝑥 : PS ⊢ 𝐴 : Type

Δ | Γ, 𝐿 : List PS ⊢ 𝑡 : 𝐴[[𝐿]/𝑥] Δ | Γ ⊢ 𝐿 : List PS

Δ | Γ ⊢ (let [𝐿] = [𝐿] in 𝑡) ≡ 𝑡 : 𝐴[[𝐿]/𝑥]
We also suppose that for every pasting schemes 𝑃 𝑄 : PS, we have a
type 𝑃 →PS 𝑄 which corresponds to the hom type in Θ between 𝑃

and 𝑄 : again, from the description of Definition 1, this can be

axiomatized as an inductive type (or directly as a built-in type),

see [35] for a formalization.

Postulate 1 (Pasting schemes). We have a type PS of pasting
schemes as well as types 𝑃 →PS 𝑄 for 𝑃 𝑄 : PS.

By induction, we define functions id : (𝑃 : PS) → (𝑃 →PS 𝑃) and
− ◦ − : (𝑃 𝑄 𝑅 : PS) → (𝑄 →PS 𝑅) → (𝑃 →PS 𝑄) → (𝑃 →PS 𝑅)
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which respectively compute identities and composition of mor-

phisms in Θ, so that they from a category in the sense of homotopy

type theory in [59, Definition 9.1.1].

Proposition 7. The above data forms a category Θ with PS as set
of objects,→PS as sets of morphisms, and id and ◦ as identities and
composition.

Proof. Given 𝑃 𝑄 : PS, the definition of the type 𝑃 →PS 𝑄 as an

inductive type implies that it has decidable equality and is thus a

set by Hedberg’s theorem [59, Theorem 7.2.5]. The fact that com-

position is associative and unital can be shown by induction (this

follows from the fact that we have a category by Definition 1). By

similar arguments as above, one can show that the type PS is a

set and that the type of automorphisms of a pasting scheme is

contractible (because Θ is a Reedy category [9]), from which fol-

lows that this is indeed a (univalent) category, in the sense that

it is complete, i.e. the canonical map from identities of objects to

isomorphisms is an equivalence. □

3.6 Yoneda embedding
Since all our types are to be interpreted as cellular sets, and we

now have access to the category Θ, it is natural to axiomatize the

Yoneda embedding as a functorよ : Θ → U. There is a subtlety

here, due to the fact thatU actually behaves as an∞-category, so
thatよ should be axiomatized as an∞-functor, which is currently

out of reach. However, it turns out to be sufficient in practice for

our purposes to axiomatize it as a wild functor.

Postulate 2 (Yoneda embedding). We suppose that we have a fully
faithful wild functor Θ→U consisting of

(A) a typeよ𝑃 : U for every pasting scheme 𝑃 : PS,
(B) a functionよ𝑓 :よ𝑃 →よ𝑄 for every 𝑓 : 𝑃 →PS 𝑄 ,
(C) an equalityよ id𝑃 = idよ𝑃 for every 𝑃 : PS,
(D) an equality よ𝑔 ◦よ𝑓 = よ(𝑔 ◦ 𝑓 ) for every composable

morphisms 𝑓 : 𝑃 →PS 𝑄 and 𝑔 : 𝑄 →PS 𝑅,
(E) a proof that the map ♭よ : ♭(𝑃 →PS 𝑄) → ♭(よ𝑃 → よ𝑄)

is an equivalence for 𝑃 𝑄 :: PS.

A type of the form よ𝑃 for some pasting scheme 𝑃 is said to be

representable.
Given a crisp type 𝐴 :: U and a pasting scheme 𝑃 : PS, the

type 𝐴𝑃 of 𝑃-cells of 𝐴 is

𝐴𝑃 ≡ ♭(よ𝑃 → 𝐴)
Note that this type is only expected to be a space, as opposed to a

general cellular space: this can be formulated here thanks to the ♭

modality. We simply write 𝐴𝑛 for 𝐴O𝑛 . Note that (E) states that the

space of 𝑃-cells of よ𝑄 is precisely the space of maps 𝑃 →PS 𝑄 ,

i.e. (よ𝑄)𝑃 ≃ (𝑃 →PS 𝑄). A consequence of the subsequent Postu-

late 6 is that the Yoneda functor preserves the terminal type:

Lemma 8. We haveよ[] = 1.

Proof. Given a pasting scheme 𝑃 , we have

(よ[])𝑃 = ♭(よ𝑃 →よ[]) by definition of (−)𝑃
= ♭(𝑃 →PS []) by (E) of Postulate 2

= ♭1 by property of Θ

= ♭(よ𝑃 → []) because [] is terminal

= 1𝑃 by definition of (−)𝑃
By Postulate 6, we thus deduce thatよ[] is equivalent to 1. □

We thus have that ♭𝐴 is the type of 0-cells of 𝐴 as expected:

Corollary 9. For any crisp type 𝐴, we have 𝐴0 = ♭𝐴.

Taking cells in a crisp type𝐴 is functorial in the sense that a map

𝑓 : 𝑃 →PS 𝑄 induces a map 𝐴𝑓 : 𝐴𝑄 → 𝐴𝑃 (also sometimes noted

𝑓 ∗ : 𝐴𝑄 → 𝑄𝑃 ), and a map 𝑓 :: 𝐴→ 𝐵 induces a map 𝑓𝑃 : 𝐴𝑃 → 𝐴𝑄

(those are respectively given by pre- and post-composition). In

particular, we have source and target maps 𝐴src : 𝐴𝑃 → 𝐴𝜕𝑃 and

𝐴tgt : 𝐴𝑃 → 𝐴𝜕𝑃 , that we simply respectively write src and tgt in

the following. We say that two 𝑃-cells are parallel when they have

the same source and the same target (by convention, two 0-cells

are always parallel).

3.7 Cellular cohesion
Now that we have introduced a type of pasting schemes along

with the corresponding Yoneda embedding, we can formulate a

new axiom which ensures that the ♭ modality actually behaves

as explained in Section 3.3, by discarding all spaces in a presheaf,

excepting the one corresponding to objects.

Given a type 𝐴 and a pasting scheme 𝑃 , we have a canoni-

cal map 𝐴 → (よ𝑃 → 𝐴) sending an element 𝑥 : 𝐴 to the

constant function; this map can also be understood as the map

よ𝑡𝑃 : 𝐴 ≃ (よ[] → 𝐴) → (よ𝑃 → 𝐴) where 𝑡𝑃 : 𝑃 → [] is
the terminal map in Θ. We say that 𝐴 is cellularly discrete when
this map is an equivalence for every 𝑃 : PS. Such a type is thus

local with respect to all representable types, in the sense of [53].

Recall from Section 3.3 that we have another notion of discreteness,

which we call being ♭-discrete here: a type𝐴 is discrete in this sense

when the canonical map ♭𝐴→ 𝐴 is an equivalence. Following the

cohesion axiom of [57, Axiom C0], we postulate that both notions

of discreteness coincide:

Postulate 3 (Cellular cohesion). For any type 𝐴 :: U, 𝐴 is
cellularly discrete if and only if it is ♭-discrete, and we simply say
discrete for both.

Proposition 10. The types PS as well as 𝑃 →PS 𝑄 for pasting
schemes 𝑃 and 𝑄 are discrete.

Proof. We have seen in the proof of Proposition 7 that both types

have decidable equality and are thus discrete by [57, Lemma 8.15].

In order to apply this lemma, we need to make sure that Axiom C1

of [57] is satisfied, which follows immediately from Postulate 3 and

the fact that representable types are inhabited. The excluded middle

is also listed as a requirement, but is not actually necessary for the

direction of the implication we are using. □

As a consequence of the previous result, there is essentially no

difference between PS and ♭ PS, thanks to which we will not need

to be precise about whether the variables for pasting schemes are

crisp or not. This also sheds light on the fact that the type PS does

not correspond to the category Θ: although it is actually a category

(by Proposition 10 and Theorem 19), its internal morphisms are

trivial and thus not the morphisms of pasting schemes.
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3.8 Suspension and hom types
We write U�� ≡ Σ(𝑋 : U).(𝑋 × 𝑋 ) for the type of bipointed
types. Equivalently, a bipointed type is a type 𝑋 equipped with

two maps left, right : 1 → 𝑋 . Given a pasting scheme 𝑃 , the

type よ𝑃 is canonically bipointed when equipped with the mor-

phisms よ left,よ right : よ[] → よ𝑃 , whose source can be con-

sidered to be 1 by Lemma 8. Given two bipointed types 𝐴 and 𝐵,

we write 𝐴→�� 𝐵 for the type of bipointed maps between 𝐴 and 𝐵,

i.e. maps preserving the two distinguished elements.

We now want to axiomatize the existence of a suspension opera-

tion on types which can be thought of as a left adjoint S : U →U��

to the hom-type functor from the ∞-category U�� to the ∞-cate-
goryU which will be considered later. This operation should corre-

spond to the one already defined for pasting schemes. Moreover, the

characterization of hom-spaces toward suspensions in Proposition 4

suggests the following axiomatization:

Postulate 4 (Suspension). We suppose that we have a crisp wild
functor S :: U → U�� and, for every 𝑃 : PS with 𝑃 ≡ [𝑃1, . . . , 𝑃𝑛],
an interwining map 𝛽𝑃 :: よS𝑃 →�� Sよ𝑃 which is an equivalence
and such that the canonically induced map 1 + Σ𝑖𝑋𝑃𝑖 + 1→ (S𝑋 )𝑃
is an equivalence. We moreover suppose that S preserves pushouts.

Above, the canonical map 𝑓 : 1 + Σ𝑖𝑋𝑃𝑖 + 1 → (S𝑋 )𝑃 sends the

element of the left (resp. right) copy of 1 to the left (resp. right)

canonical point of S𝑋 (which is bipointed), and the image of a cell

𝑎 : 𝑋𝑃𝑖 in the middle summand is ♭(S(−) ◦ 𝛽𝑃𝑖 ◦よ𝜋𝑖 ) (𝑎), i.e. the
composite

よ𝑃 よS𝑃𝑖 Sよ𝑃𝑖 S𝑋𝑃𝑖

よ𝜋𝑖 𝛽𝑃 S𝑎♭

up to flattening. One of our main motivations for introducing sus-

pension is to be able to define the hom of a type as a right adjoint:

Postulate 5 (Hom). There is a crisp wild right adjoint to the sus-
pension functor noted hom :: U�� → U. The image of (𝐴, 𝑥,𝑦) is
denoted hom𝐴 (𝑥,𝑦).

As expected, the 0-cells of hom𝐴 (𝑥,𝑦) correspond to 1-cells in 𝐴

from 𝑥 to 𝑦.

Lemma 11. For 𝐴 :: U and 𝑥, 𝑦 :: 𝐴, we have

♭(hom𝐴 (𝑥,𝑦)) = Σ(𝑎 : 𝐴1).(src (𝑎) = 𝑥) × (tgt (𝑎) = 𝑦)

We sometimes write 𝑥 →𝐴 𝑦 instead of ♭ hom𝐴 (𝑥,𝑦). Further pos-
tulates are introduced in Section 4.2, after we define categories in

order to motivate them.

4 Higher categories
We now identify, among types, those which should reasonably

be considered as higher categories. Since types are interpreted as

cellular-spaces, it is natural to introduce two conditions ensuring

that they behave as higher categories, following the definition of

Θ-spaces [50, 51], namely a Segal condition and a completeness con-

dition. This approach is very similar in spirit to the one adopted in

simplicial type theory [52] where “Rezk types” are defined as those

being both Segal and complete. However, we need to formulate the

Segal condition for pasting schemes instead of simplices, which can

be done as follows, based on the definition in [39, Section 4.2.1.6].

Given a pasting scheme 𝑃 , the typeよ𝑃 is expected to be a category

(we will see that this is indeed the case in Theorem 30) and thus

be closed under compositions. There is another type that we can

associate to the type 𝑃 , its realization, noted ⟨𝑃⟩ and defined as

the colimit of representables associated to the generators in 𝑃 . The

type ⟨𝑃⟩ is similar toよ𝑃 excepting that some compositions are

not present. For instance, ⟨[2]⟩ corresponds to a simplicial 2-horn

whereasよ[2] corresponds to a 2-simplex:

⟨[2]⟩ =
·

· ·
よ[2] =

·

· ·
⇕

Given a pasting scheme 𝑃 , we will have a canonical inclusion

⟨𝑃⟩ →よ𝑃 and the Segal types will be defined as those having the

right lifting property with respect to these maps.

4.1 Definition of higher categories
We begin by defining the realization of a pasting scheme as well as

the canonical map to the corresponding representable type.

Definition 12. Given a pasting scheme 𝑃 ≡ [𝑃1, . . . , 𝑃𝑛], wewrite ⟨𝑃⟩
for its cellular realization, defined as the colimit of the diagram

1 1 . . . 1

S⟨𝑃1⟩ S⟨𝑃2⟩ S⟨𝑃𝑛⟩

right left right
left right left

(3)

Definition 13. Given a pasting scheme 𝑃 , we define the canonical
map can𝑃 : ⟨𝑃⟩ →よ𝑃 from the realization of 𝑃 to the correspond-

ing representable type, by induction on 𝑃 . Given pasting scheme

𝑃 ≡ [𝑃1, . . . , 𝑃𝑛] and an index 𝑖 , we can define a map S⟨𝑃𝑖⟩ →よ𝑃

as the composite

S⟨𝑃𝑖⟩ Sよ𝑃𝑖 よS𝑃𝑖 よ𝑃
S can𝑃𝑖 ∼ ⊆𝑖

The collection of these morphisms forms a cocone for the dia-

gram (3) defining the cellular realization, thus inducing the desired

map can𝑃 : ⟨𝑃⟩ →よ𝑃 by universal property of the colimit.

In the case of the empty pasting scheme [], we have that both ⟨[]⟩
andよ[] are isomorphic to 1 (see Lemma 8), and we can consider

that can[ ] is identity on 1 without loss of generality. Similarly, for a

pasting scheme of the form [𝑃], we can take can[𝑃 ] to be 𝛽𝑃 ◦S can𝑃 .
We can now define the property of being Segal as a right lifting

property.

Definition 14. A type𝐴 :: U is Segal when for every pasting scheme

𝑃 : PS, the map

♭(よ𝑃 → 𝐴) → ♭(⟨𝑃⟩ → 𝐴)

induced by precomposition with can𝑃 is an equivalence.

Suppose fixed a Segal type𝐴 :: U. Given 𝑃 : PS, an element 𝑎 : 𝐴𝑃 is

called a 𝑃-cell, and its source and target are respectively the 𝜕𝑃-cells
𝐴src (𝑎) and 𝐴tgt (𝑎), which we simply write as src (𝑎) and tgt (𝑎).
Given 𝑛 ∈ N, an O𝑛-cell is simply called an 𝑛-cell.

We can define all the expected composition operations in a Segal

type 𝐴. The terminal map 𝜏 : O1 →PS O0 induces, for any 𝑛, by sus-

pension, a map S
𝑛𝜏 : O𝑛+1 →PS O𝑛 and thus amap id𝑛 : 𝐴𝑛 → 𝐴𝑛+1

sending an 𝑛-cell of𝐴 to its identity. Similarly, given 𝑖 < 𝑛, consider
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the pasting scheme 𝑃 ≡ [O𝑛−𝑖−1,O𝑛−𝑖−1]. Since suspension pre-

serves pushouts, the realization ⟨S𝑖𝑃⟩ is the pushout of the diagram
O𝑛 O𝑖 O𝑛

tgt src

and a map ♭(⟨S𝑖𝑃⟩ → 𝐴) thus corresponds to a

pair of 𝑖-composable 𝑛-cells in𝐴. By the Segal property, such a map

extends to a map ♭(よS
𝑖𝑃 → 𝐴) and thus induces an 𝑛-cell in 𝐴

by precomposition with the 𝑖-th suspension of the map O𝑛−𝑖 → 𝑃

defined by ( 𝑗 ↦→ 2 𝑗, (idO𝑛−𝑖−1 ) 𝑗 ), i.e.

0 1

0 1 2

O𝑛−𝑖−1

O𝑛−𝑖−1 O𝑛−𝑖−1

id𝑃𝑛−𝑖−1 id𝑃𝑛−𝑖−1

We have thus defined a map − ∗𝑖 − : 𝐴𝑛 ×𝐴𝑖
𝐴𝑛 → 𝐴𝑛 which

corresponds to the composition of 𝑛-cells in codimension 𝑖 . We

simply write 𝑎 ∗𝑏 for the composition of 𝑛-cells 𝑎 and 𝑏 in codimen-

sion 𝑛 − 1. Those operations have the expected source and target

maps, e.g. for𝑛-cells 𝑎 and𝑏, we have src (id𝑛 (𝑎)) = tgt (id𝑛 (𝑎)) = 𝑎,

src (𝑎 ∗ 𝑏) = src (𝑎), tgt (𝑎 ∗ 𝑏) = tgt (𝑏), and so on. In particular, the

composition operation induces a map

(𝑥 →𝐴 𝑦) → (𝑦 →𝐴 𝑧) → (𝑥 →𝐴 𝑧)
still written − ∗ − for arbitrary parallel (𝑛−1)-cells 𝑥,𝑦, 𝑧.

Given a type 𝐴 :: U and a cell 𝑎 : 𝑥 →𝐴 𝑦, we say that 𝑎 is

invertible when the following type is inhabited:

isInv(𝑎) ≡ (Σ(𝑏 : 𝑦→𝐴𝑥).𝑎 ∗ 𝑏 = id𝑥 ) ×
(
Σ(𝑏 : 𝑦→𝐴𝑥).𝑏 ∗ 𝑎 = id𝑦

)
We write 𝑎 ≃𝐴 𝑏 for the type of invertible maps in 𝑎 →𝐴 𝑏,

and 𝐴≃𝑛+1 ≡ Σ(𝑎 𝑏 : 𝐴𝑛).(𝑎 ≃𝐴 𝑏) for the type of all invertible

(𝑛+1)-cells in 𝐴.

Definition 15. A type 𝐴 :: U is complete when the canonical maps

(𝑥 =𝐴𝑛 𝑦) → (𝑥 ≃𝐴𝑛 𝑦) are equivalences for every dimension 𝑛

and parallel 𝑛-cells 𝑎, 𝑏 :: 𝐴𝑛 .

The above property can be rephrased as the fact that the canonical

map 𝐴𝑛 → 𝐴≃𝑛+1 is an equivalence for every dimension 𝑛. Inter-

estingly, the type of invertible maps can be represented as follows.

Given 𝑛 ∈ N, we write E𝑛+1 for the pushout

よS
𝑛+1 [1] ⊔よS

𝑛+1 [1] よS
𝑛 [3]

よS
𝑛 [1] ⊔よS

𝑛 [1] E𝑛+1

よS
𝑛𝑡⊔よS

𝑛𝑡

[よS
𝑛𝛼,よS

𝑛𝛽 ]

⌜

where 𝑡 : [1] → [0] is the terminal map, the maps 𝛼, 𝛽 : [1] → [3]
are given by 𝛼 (0) ≡ 1, 𝛼 (1) ≡ 2, 𝛽 (0) ≡ 1 and 𝛽 (1) ≡ 3, i.e.

[1] · ·

[3] · · · ·

𝛼

· · [1]

· · · · [3]

𝛽

and the above map [よS
𝑛𝛼,よS

𝑛𝛽] denotes the universal map in-

duced by the coproduct from the two maps よS
𝑛𝛼 and よS

𝑛𝛽 .

This object represents equivalences in the sense that we have

𝐴≃𝑛+1 = ♭(E𝑛+1 → 𝐴), see for instance [50, Proposition 10.1]. Since

(−) → 𝐴 sends pushouts to pullbacks, we have that 𝐴≃𝑛+1 is the
pullback 𝐴2

𝑛 ×𝐴2

𝑛+1
𝐴S

𝑛 [3] . We thus have the following useful refor-

mulation of completeness:

Lemma 16. A type 𝐴 :: U is complete when the following square is
cartesian for every 𝑛 : N:

𝐴2

𝑛+1 𝐴S
𝑛 [3]

𝐴2

𝑛 𝐴𝑛
⌜

⟨𝐴𝛼𝑛 ,𝐴𝛽𝑛 ⟩

id𝑛 × id𝑛

⟨id ,id ⟩

𝐴
S
𝑛𝑡

i.e. when the canonical map ♭(よO𝑛 → 𝐴) → ♭(𝐸𝑛+1 → 𝐴) is an
equivalence for all 𝑛.

Definition 17. A complete Segal type is called an (∞, 𝜔)-category.
We write Cat∞,𝜔 for their type.

4.2 Further postulates
Having defined categories, we show here general results about them.

Namely, that all discrete types are categories (Section 4.3), that the

hom of a category is still a category (Section 4.5), that representable

types are categories (Section 4.6) and that categories are stable

under finite limits and sums (Section 4.7). In order to be able to do

so, we first need to introduce three more postulates, which enable

one to effectively construct equivalences and manipulate types

through representable types.

Since our types are to be interpreted as presheaves over Θ, we
expect that they are entirely determined by their spaces of 𝑃-cells

if we consider all pasting schemes 𝑃 . We axiomatize this by the

following postulate which will be very useful in order to build

equivalences in practice, by defining them pointwise.

Postulate 6. A map 𝑓 :: 𝐴→ 𝐵 is an equivalence if and only if all
the maps 𝑓𝑃 : 𝐴𝑃 → 𝐵𝑃 are equivalences for 𝑃 : PS.

In a category, an object 𝐴 is connected when Hom(𝐴,−) pre-
serves finite coproducts [16]. For instance, the terminal set is the

only connected object in the category of sets; in the category of

topological spaces, connected spaces are thosewhich are non-empty

and connected in the usual sense. In the category of cellular spaces,

all the representable objects are connected: the following postulate

precisely asserts this. Another point of view on this is that colimits

are computed pointwise in presheaf categories (such as cellular

sets) [42, Corollary 5.1.2.3]: here, we only postulate that coproducts

are pointwise.

Postulate 7. For any 𝑃 : PS, the functor (−)𝑃 : ♭U → ♭U pre-
serves coproducts.

Note that the previous discussion explains that it would have been

reasonable to suppose more generally that (−)𝑃 preserves pushouts,

or any family of small colimits. We have restricted ourselves to

coproduct here only because this is what is necessary in our appli-

cations (see Section 4.7).

The following postulate roughly enforces a weak form of the

density theorem, which states that every type is a colimit of repre-

sentable types: here, we actually only require that a type is covered

by representable ones. We recall that a map 𝑓 : 𝐴→ 𝐵 is a surjec-
tion when for every 𝑦 : 𝐵, we have that the fiber of 𝑓 at 𝑦 is merely

inhabited, i.e. we have ∥ fib𝑓 (𝑦)∥−1, see [59, Definition 4.6.1].

Postulate 8. For any type 𝑋 :: U, the canonical map

𝜀 : (Σ(𝑃 : PS) .Σ(𝑥 : 𝑋𝑃 ) .よ𝑃) → 𝑋
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defined by 𝜀 (𝑃, 𝑥, 𝑝) ≡ 𝑥♭ 𝑝 is a surjection.

4.3 Discrete types are (∞, 𝜔)-categories
We show here that discrete types are categories. This is intuitively

expected because, by Postulate 3, a discrete type does not have

non-trivial higher cells, and the conditions for being a category

(Definition 17) are thus automatically satisfied.

Lemma 18. If 𝐴 :: U is a discrete type, then for all 𝑎, 𝑏 :: 𝐴, we have
hom𝐴 (𝑎, 𝑏) ≃ (𝑎 =𝐴 𝑏).

Proof. By Postulate 6, it is enough to show that the canonical map

(𝑎 =𝐴 𝑏) → hom𝐴 (𝑎, 𝑏) is objectwise an equivalence. Given 𝑃 : PS,
we have

hom𝐴 (𝑎, 𝑏)𝑃 = ♭(よS𝑃 →�� (𝐴, 𝑎, 𝑏)) by Postulate 5

= Σ(𝑓 : 𝐴S𝑃 ).(𝑓♭ (left) = 𝑎) × (𝑓♭ (right) = 𝑏)
by [57, Lemma 6.8]

= Σ(𝑥 : ♭𝐴).(𝑥♭ = 𝑎) × (𝑥♭ = 𝑏)
because 𝐴 is discrete

= (𝑎 =𝐴 𝑏) by [57, Propositions 6.8 and 6.19]

and we conclude. □

Theorem 19. Any discrete type 𝐴 :: U is an (∞, 𝜔)-category.

4.4 Homotopy level is determined pointwise
The goal of this section is to characterize homotopy levels in our

type theory. We namely show in Theorem 24 that a type 𝐴 is an

𝑛-type if and only if so are all the types 𝐴𝑃 .

We begin by observing that, because all types are covered by

representable ones, in order to show that a property holds for all

the elements of a type it is enough to show that it holds for all

elements covered by a representable type.

Lemma 20. For any 𝑋 :: U and 𝐴 : 𝑋 → Prop, we have(
(𝑃 : PS) → (𝑐 : 𝑋𝑃 ) → (𝑠 :よ𝑃) → 𝐴(𝑐♭ 𝑠)

)
→ (𝑥 : 𝑋 ) → 𝐴(𝑥)

Proof. Suppose given 𝑥 : 𝑋 . Since we are eliminating toward a

proposition, by Postulate 8, we can assume that there is 𝑃 : PS,
𝑐 : 𝑋𝑃 and 𝑠 :よ𝑃 such that 𝑐♭ 𝑠 = 𝑥 . From the first argument, we

deduce that 𝐴(𝑥) holds. □

We can now show the following universal property for 0-truncated

crisp types: those are not only covered by representable types, but

can actually be obtained as a canonical colimit of those (in the

universe of 0-truncated types).

Proposition 21. For any 𝑋 :: U, we can define maps 𝜇 and 𝜈 both
from

Σ(𝑃,𝑄 : PS).Σ(𝜎 : 𝑃 →PS 𝑄).Σ(𝑑 : 𝑋𝑄 ).よ𝑃

and to
Σ(𝑃 : PS).Σ(𝑐 : 𝑋𝑃 ).よ𝑃

by 𝜇 (𝑃,𝑄, 𝜎, 𝑑, 𝑠) ≡ (𝑃, 𝜎∗𝑑, 𝑠) and 𝜈 (𝑃,𝑄, 𝜎, 𝑑, 𝑠) ≡ (𝑄,𝑑, (よ𝜎) 𝑠).
Then the canonical map 𝜀 of Postulate 8 is such that 𝜀 ◦ 𝜇 = 𝜀 ◦ 𝜈 ,
Moreover, for any 𝑌 :: Set, precomposition by 𝜀 yield an equivalence

𝜑 : (𝑋 → 𝑌 ) → Σ(𝑓 : (Σ(𝑃 : 𝑃𝑆).Σ(𝑐 : 𝐴𝑃 ).よ𝑃) → 𝑌 ).𝑓 ◦𝜇 = 𝑓 ◦𝜈

As a direct corollary, we deduce that equality of maps whose target

is a set can be tested objectwise.

Corollary 22. For any two maps 𝑓 , 𝑔 :: 𝑋 → 𝑌 where 𝑋 :: U and
𝑌 :: Set,

(𝑓 = 𝑔) ↔ ((𝑃 : 𝑃𝑆) → (𝑐 : 𝑋𝑃 ) → 𝑓𝑃 (𝑐) = 𝑔𝑃 (𝑐))

Note that for second part of Proposition 21 to hold, and thus also

for Corollary 22, it is crucial that 𝑌 is set-truncated. Otherwise, the

specification of the map 𝑓 : 𝑋 → 𝑌 would require a specification

of (non-propositional) homotopies for filling naturality squares.

A fundamental type is the one of spheres S𝑛 . By [59, eq. (6.5.2)],

it can be defined as the coequalizer S𝑛 2 S𝑛+1 where the two
maps S𝑛 → 2 are the two constant maps, and with the convention

that S−1 ≡ 0.

Proposition 23. For every 𝑛, the 𝑛-sphere S𝑛 is discrete.

Proof. By [57, Theorem 6.21], discrete types contain 0, 2 and are

closed under coequalizers. □

Finally, we can deduce the main theorem in this section, which

states that truncation level for types can be tested pointwise.

Theorem 24. Let 𝑋 :: U, then for any 𝑛 ≥ −2, we have
isType𝑛 (𝑋 ) ↔ Π(𝑃 : PS) . isType𝑛 (𝑋𝑃 )

Proof. First consider the left-to-right implication and suppose that

𝑋 is an 𝑛-type. Given 𝑃 : PS, we have

∥𝑋𝑃 ∥𝑛 ≡ ∥♭(よ𝑃 → 𝑋 )∥𝑛 = ♭∥よ𝑃 → 𝑋 ∥𝑛
Since 𝑋 is an 𝑛-type, then so isよ𝑃 → 𝑋 by [59, Theorem 7.1.9],

and thus ∥よ𝑃 → 𝑋 ∥𝑛 =よ𝑃 → 𝑋 by [59, Corollary 7.3.7]. We thus

have ∥𝑋𝑃 ∥𝑛 = 𝑋𝑃 , from which we deduce that 𝑋𝑃 is 𝑛-truncated

by [59, Corollary 7.3.7] again.

Conversely, suppose that 𝑋𝑃 is 𝑛-truncated for every 𝑃 : PS.
By [59, Theorem 7.2.9], we have that 𝑋 is an 𝑛-type if and only if

the canonical map (S𝑛+1 → 𝑋 ) → 𝑋 (given by precomposition

with the basepoint map 1→ S𝑛+1) is an equivalence. By Postulate 6,

this is equivalent to the canonical maps (S𝑛+1 → 𝑋 )𝑃 → 𝑋𝑃 being

an equivalence for every 𝑃 : PS. Moreover, we have

(S𝑛+1 → 𝑋 )𝑃 ≡ ♭(よ𝑃 → S𝑛+1 → 𝑋 )
= ♭(S𝑛+1 → ♭(よ𝑃 → 𝑋 ))
≡ ♭(S𝑛+1 → 𝑋𝑃 )

which uses (in addition to permuting arguments) the fact that we

have ♭(𝐵 → ♭𝐴) = ♭(𝐵 → 𝐴) when 𝐵 is discrete [57, Corol-

lary 6.15], which is the case here for S𝑛+1 by Proposition 23. We

thus have that 𝑋 is an 𝑛-type if and only if the canonical map

♭(S𝑛+1 → 𝑋𝑃 ) → 𝑋𝑃 is an equivalence. Since𝑋𝑃 is 𝑛-truncated, we

have that the canonical map (S𝑛+1 → 𝑋𝑃 ) → 𝑋𝑃 is an equivalence

and we conclude using the fact that ♭ preserves equivalences. □

4.5 Homs of categories
We show here that for any category, the hom-type between any two

elements is again a category. We first establish that the canonical

map between the realization of a pasting scheme and the corre-

sponding representable is compatible with suspension. Recall that,

given a pasting scheme 𝑃 , the realization of S𝑃 is, by definition,

the colimit reduced to S𝑃 and is thus canonically equivalent to it.

Similarly, we have thatよS𝑃 is equivalent to Sよ𝑃 by Postulate 4.
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Lemma 25. For any pasting scheme 𝑃 : PS, there is a commutative
square

⟨S𝑃⟩ よS𝑃

S⟨𝑃⟩ Sよ𝑃

∼

can
S𝑃

∼

S can𝑃

Proof. Recall that the canonical map can𝑄 : ⟨𝑄⟩ → よ𝑄 was

introduced in Definition 13. In the particular case where 𝑄 ≡ [𝑃]
is the suspension of a pasting scheme 𝑃 , this map is

S⟨𝑃⟩ Sよ𝑃 よS𝑃 よ𝑄
S can𝑃 ∼ よ⊆𝑃

whereよ⊆𝑃 is the identity, thus providing the commutative square,

by definition of can𝑄 . □

Lemma 26. If𝐴 :: U is a Segal type and 𝑎, 𝑏 :: 𝐴, then for any pasting
scheme S𝑃 , the canonical map

♭(よ𝑃 →�� (𝐴, 𝑎, 𝑏)) → ♭(⟨𝑃⟩ →�� (𝐴, 𝑎, 𝑏))

is an equivalence

Proof. The proof mainly consists in commuting ♭ to Σ-types and
identity types [57, Lemma 6.8 and Corollary 6.2], and using the

bipointedness of can𝑃 . □

Lemma 27. Let𝐴 :: U be a Segal Type, and 𝑎, 𝑏 :: 𝐴, then hom𝐴 (𝑎, 𝑏)
is also Segal.

Proof. We have

♭(よ𝑃 → hom𝐴 (𝑎, 𝑏))
= ♭(Sよ𝑃 →�� (𝐴, 𝑎, 𝑏)) by the adjunction S ⊣ hom
= ♭(よS𝑃 →�� (𝐴, 𝑎, 𝑏)) by Postulate 4

= ♭(⟨S𝑃⟩ →�� (𝐴, 𝑎, 𝑏)) by Lemma 26

= ♭(S⟨𝑃⟩ →�� (𝐴, 𝑎, 𝑏)) by Lemma 25

= ♭(⟨𝑃⟩ → hom𝐴 (𝑎, 𝑏)) by the adjunction S ⊣ hom

and we conclude. □

Theorem 28. Let 𝐴 :: U be a an (∞, 𝜔)-category and 𝑎, 𝑏 :: 𝐴. Then
hom𝐴 (𝑎, 𝑏) is an (∞, 𝜔)-category.

Proof. By Lemma 27, we know that hom𝐴 (𝑎, 𝑏) is Segal, and it

remains to prove its completeness. First observe that E𝑛+1 ≃ S E𝑛

by our assumption that S preserves pushouts Postulate 4.

♭(よO𝑛 → hom𝐴 (𝑎, 𝑏))
= ♭(よO𝑛+1 → hom𝐴 (𝑎, 𝑏)) by the adjunction S ⊣ hom
= ♭(E𝑛+2→�� (𝐴, 𝑎, 𝑏)) by completeness of 𝐴

= ♭(E𝑛+1→�� hom𝐴 (𝑎, 𝑏))
by S ⊣ hom and the previous observation

and we conclude. □

4.6 Representable types are (∞, 𝜔)-categories
We show here that the representable types, i.e. those of the form

よ𝑃 for some pasting scheme 𝑃 , are categories.

Proposition 29. Given 𝑃 : PS, the typeよ𝑃 is Segal.

Theorem 30. Given 𝑃 : PS, the typeよ𝑃 is an (∞, 𝜔)-category.

Proof. The typeよ𝑃 is Segal by Proposition 29 and we turn to

completeness. On the one hand, note that if 𝑎, 𝑏 : (よ𝑃)𝑛 , then 𝑎 = 𝑏

is propositional by Postulate 2 and Proposition 7. On the other hand,

using Lemma 3, we have that if there is an equivalence 𝑎 ≃よ𝑃 𝑏,

then 𝑎 = 𝑏 and this equivalence is unique. We have therefore proved

that 𝑎 = 𝑏 and 𝑎 ≃ 𝑏 are equivalent propositions, which gives the

result. □

In the above proof, we have actually achieved a bit more than the

theorem: we have shown thatよ𝑃 is skeletal. We have also proved

that 1 ≃ よ[] is an (∞, 𝜔)-category (which also follows from 1

being discrete, see Theorem 19).

4.7 Stability under sums and finite limits
We show here that categories are stable under finite limits and

finite sums. Since we already know that the initial and terminal

type are categories (by Theorem 19, for instance) all we have to

show is stability under pullbacks and coproducts. We begin by

characterizing the cells in those types before showing stability

under pullbacks.

Lemma 31. Consider categories 𝐴, 𝐵,𝐶 :: U be (∞, 𝜔)-categories
together with a pasting scheme 𝑃 : PS. For any two maps 𝑓 :: 𝐵 → 𝐴

and 𝑔 :: 𝐶 → 𝐴, writing 𝐵 ×𝐴 𝐶 for their pullback, we have

(𝐵 ×𝐴 𝐶)𝑃 = 𝐵𝑃 ×𝐴𝑃
𝐶𝑃

Similarly, given two types 𝐵,𝐶 :: U, we have

(𝐵 +𝐶)𝑃 = 𝐵𝑃 +𝐶𝑃

Lemma 32. We have the following characterisation of invertible cells
in pullbacks and sums:

– for any 𝐴, 𝐵,𝐶 :: U Segal-types, crisp maps 𝑓 :: 𝐵 → 𝐴,
𝑔 :: 𝐶 → 𝐴 and 𝑛 : N,

(𝐵 ×𝐴 𝐶)≃𝑛+1 ≃ 𝐵≃𝑛+1 ×𝐴≃𝑛+1 𝐶
≃
𝑛+1

– for any 𝐵,𝐶 :: U Segal-types and 𝑛 : N,

(𝐵 +𝐶)≃𝑛+1 ≃ 𝐵≃𝑛+1 +𝐶≃𝑛+1
Proposition 33. Let 𝐴, 𝐵,𝐶 :: U be three (∞, 𝜔)-categories with
two crisp maps 𝑓 :: 𝐵 → 𝐴 and 𝑔 :: 𝐶 → 𝐴. Then their pullback
𝐵 ×𝐴 𝐶 is again an (∞, 𝜔)-category.

Proof. We first show that 𝐵 ×𝐴 𝐶 is Segal. Given 𝑃 : PS, we have

♭(⟨𝑃⟩ → 𝐵 ×𝐴 𝐶) ≃ ♭((⟨𝑃⟩ → 𝐵) ×⟨𝑃 ⟩→𝐵 (⟨𝑃⟩ → 𝐶))
by universal property

≃ ♭(⟨𝑃⟩ → 𝐵) ×♭(⟨𝑃 ⟩→𝐵) ♭(⟨𝑃⟩ → 𝐶)
by [57, Theorem 6.10]

≃ 𝐵𝑃 ×𝐴𝑃
𝐶𝑃 by Segalness of 𝐴, 𝐵 and 𝐶

≃ (𝐵 ×𝐴 𝐶)𝑃 by Lemma 31
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For completeness, given 𝑛 : N, we have:

(𝐵 ×𝐴 𝐶)𝑛 ≃ (𝐵𝑛 ×𝐴𝑛 𝐶𝑛)𝑛 by Lemma 31

≃ (𝐵≃𝑛+1 ×𝐴≃𝑛+1 𝐶
≃
𝑛+1)𝑛 by completeness of 𝐴, 𝐵 and 𝐶

≃ (𝐵 ×𝐴 𝐶)≃𝑛+1 by Lemma 32

and we conclude. □

In order to show stability under coproducts, we first show that

realizations of pasting schemes are connected.

Lemma 34. Given 𝑃 : PS and 𝑋,𝑌 :: U, ⟨𝑃⟩ is connected, in the sense
that any crisp map 𝑓 :: ⟨𝑃⟩ → 𝑋 + 𝑌 factors through 𝑋 or 𝑌 .

Proof. We show the stronger property that S
𝑛 ⟨𝑃⟩ is connected for

any 𝑛 : N and 𝑃 ≡ [𝑃1, . . . , 𝑃𝑘 ], by induction on 𝑃 . Since suspension

preserves pushouts by Postulate 4, we have

S
𝑛 ⟨𝑃⟩ = S

𝑛+1⟨𝑃1⟩ ⊔よO𝑛
. . . ⊔よO𝑛

S
𝑛+1⟨𝑃𝑘 ⟩

By Postulate 7 theよO𝑛 are connected, and by induction hypothesis

the S
𝑛+1⟨𝑃𝑖⟩ are connected, and we conclude using the fact that

connected objects are stable under pushout along an inhabited

type. □

Proposition 35. Given two (∞, 𝜔)-categories 𝐴, 𝐵 :: U, their co-
product 𝐴 + 𝐵 is again an (∞, 𝜔)-category.

We do not expect that (∞, 𝜔)-categories are closed under pushouts

of types, because it would requires to have composites for cells

glued next to one another in the pushout: an example of a non-

Segal pushout of categories is the horn ⟨[2]⟩, where the composite

of the two 1-cells is missing.

5 Conclusion and perspectives
Wehave defined a type theory inwhich cellular spaces andΘ-spaces
can be manipulated in a synthetic way, and have illustrated its

usefulness by showing various properties of categories. It would

be interesting to have an implementation in order to concretely

experiment with this type theory, but there are various possible

extensions and variations on this work that wewould like to explore

before embarking into implementation.

One of the main features of our type theory is the ability to

speak about a higher category of presheaves over the category Θ.
It seems that a large part of the work done here does not actually

depend onΘ (developements depending on Postulates 2, 3 and 6 to 8)

and would generalize to presheaves over any category satisfying

suitable conditions. It would be interesting to investigate those

conditions and explore the definition of type theories admitting

semantics in arbitrary presheaf categories. In particular, this would

enable one to approach synthetically other models of∞-categories
or higher algebraic structures (such as Γ-spaces).

Although our approach so far has allowed us to define basic

constructions in higher category theory, it crucially lacks functo-

riality properties. In homotopy type theory, such properties fol-

low for free from the univalence axiom which ensures that ev-

ery construction is homotopy invariant. For instance, the type of

identities 𝑥 =𝐴 𝑦 between two elements of 𝐴 is functorial in 𝑥

and 𝑦, thanks to the transport along other paths of 𝐴: any pair of

paths 𝑝 : 𝑥 ′ =𝐴 𝑥 and 𝑞 : 𝑦 =𝐴 𝑦′ induces, by transport, a map

𝑥 =𝐴 𝑦 → 𝑥 ′ =𝐴 𝑦′, which corresponds to the composition of

paths. In our directed setting, we expect that we could similarly

associate to every 1-cells 𝑝 : hom𝐴 (𝑥 ′, 𝑥) and 𝑞 : hom𝐴 (𝑦,𝑦′) a
map hom𝐴 (𝑥,𝑦) → hom𝐴 (𝑥 ′, 𝑦′), and more generally that we can

see hom𝐴 as a map of type 𝐴op ×𝐴→U. This does not seem to be

possible with our current definition of hom𝐴, because it requires

the variables 𝑥 and 𝑦 to be crisp, thus restricting them to groupoids.

To solve this issue and related ones, it would be interesting to

formally introduce a type 𝑋 ⇁ 𝑌 corresponding to the category

of functors and oplax natural transformations. Its usefulness can

be explained as follows. Writing I ≡ よ[1] for the formal arrow,

the type I → 𝐴 is not the correct space of 1-cells in 𝐴 (it only

has the right core) because it does not capture the higher cells.

However, the type I ⇁ 𝐴 should be much better behaved, and

should enable us to define correct notion of hom-type or slices. It

would also be interesting to axiomatize the left adjoint to this arrow

type, which should correspond to the Crans-Gray tensor product

of categories [39, Section 4.3], noted ⊗. This tensor product can
be thought of as a variant of the cartesian product where various

squares are filled with directed arrows instead of isomorphisms, so

that it is also better behaved with respect to higher cells. We expect

that the suspension S𝐴 can be recovered as a suitable quotient

of I ⊗ 𝐴, and that the notion of (co)cartesian fibrations could be

defined using it, thus paving the way toward a formalization of the

(∞, 𝜔)-categorical Yoneda lemma.

In order to extend our type theory with new type formers such as

the tensor product and its right adjoints, we need to account for the

presence of two different tensor products (the Crans-Gray tensor

product ⊗ and the cartesian tensor product ×), whose presence

should be reflected in the structure of contexts, which shall now

have two distinct kinds of “commas” corresponding to the two prod-

ucts. This suggests investigating a variant of our type theory based

on bunched logic [48, 54, 55], whose aim is precisely to take this

kind of situation into account. The most subtle part here consists

in correctly handling the interaction between bunched logic and

dependent types, which is made simpler in our case because depen-

dencies in ⊗-types is not needed. Another peculiarity of our setting
is that ⊗ is non-symmetric and semi-cartesian (thus allowing for

weakening).
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A Omitted proofs
Proof of Lemma 3. We write 𝑃 ≡ [𝑃1, · · · , 𝑃𝑚] and proceed by

induction on the dimension 𝑛. If 𝑛 = 0, the cell 𝑎 induces inequality

(𝑎◦src) ≤ (𝑎◦tgt) as elements of [𝑚]. Similarly (𝑏◦src) ≤ (𝑏◦tgt)
and we deduce the result. Now, consider the inductive case, with

𝑛 > 0. Wemay write 𝑎 ≡ (𝑓 , (𝜎𝑖 )𝑖∈𝐼 ) and𝑏 ≡ (𝑔, (𝜏 𝑗 ) 𝑗∈ 𝐽 ). First, note
that 𝑓 (0) = 𝑔(0) and 𝑓 (1) = 𝑔(1) because src : O𝑛 → O𝑛+1 pre-
serves endpoints (because 𝑛 > 0). We deduce that 𝐼 = 𝐽 and 𝑓 = 𝑔.

Then, for each 𝑖 ∈ 𝐼 , we have 𝜎𝑖 ◦ src = (𝑎 ◦ src)𝑖 (because 𝑛 > 0),

and similarly, we have 𝜏𝑖 ◦ tgt = (𝑏 ◦ tgt)𝑖 , so that 𝜎𝑖 ◦ src = 𝜏𝑖 ◦ tgt.
Exchanging the roles of 𝜎𝑖 and 𝜏𝑖 above also yields 𝜏𝑖 ◦ src = 𝜎𝑖 ◦ tgt.
Hence, by induction hypothesis, we have 𝜎𝑖 ◦ src = 𝜎𝑖 ◦ tgt and
𝜎 = 𝜏 . In particular, we already have 𝑎 = 𝑏. Finally, using the defini-

tion of src and tgt again, we have (𝑎 ◦ src)𝑖 = (𝑎 ◦ tgt)𝑖 for each 𝑖 ,
whence 𝑎 ◦ src = 𝑎 ◦ tgt. □

Proof of Proposition 4. The suspension of a pasting scheme pro-

duces a pasting scheme which is canonically bipointed so that

suspension extends as an operation S : Θ → Θ��. Moreover, the

Yoneda embedding よ : Θ → PshΘ canonically extends as a

map よ : Θ�� → (PshΘ)�� (a pasting scheme is bipointed when

equipped with two maps 𝑙, 𝑟 : [] → 𝑃 , and those are sent to maps

よ𝑙,よ𝑟 : 1 � よ[] →よ𝑃 by the Yoneda functor, making its image

bipointed). We thus have a composite functor

Θ Θ�� (PshΘ)��
S よ

Moreover, the target category (PshΘ)�� is canonically isomorphic

to the category [Θ,S��] of presheaves enriched in bipointed spaces.

By left Kan extension, it induces a functor

Lanよ (よ ◦ S) : PshΘ→ (PshΘ)��

and, by the usual formulas in enriched categories [34], the image

of a presheaf 𝑋 ∈ PshΘ can be computed as the following coend

in (PshΘ)��:

Lanよ (よ ◦ S) (𝑋 ) =

∫ 𝑄∈Θ
𝑋𝑄 ·よS𝑄

Namely, the category (PshΘ)�� � [Θ,S��] is copowered over S��,
where the copower of𝐴 : S�� and𝑋 ∈ (PshΘ)�� is the presheaf (𝐴·𝑋 )
in (PshΘ)�� such that, for 𝑃 ∈ Θ, the space (𝐴 · 𝑋 )𝑃 obtained from

𝐴 × 𝑋𝑃 by quotienting both subspaces 𝐴 × {𝑙} and 𝐴 × {𝑟 } to a

point (in particular, when 𝐴 is the interval, this is precisely the

topological suspension of 𝑋𝑃 ). We write −++ : S → S�� for the left
adjoint to the forgetful functor, associating to a space 𝐴 the free

bipointed space 1 +𝐴 + 1. This functor preserves colimits (as a left

adjoint). We can then compute:

(S𝑋 )𝑃 = (Lanよ (よ ◦ S)) (𝑋 )𝑃 by definition

=

∫ 𝑄∈Θ
𝑋𝑄 ·よS𝑄𝑃 (𝐴)

=

∫ 𝑄∈Θ
𝑋𝑄 · Θ(𝑃, S𝑄) by the Yoneda lemma

=

∫ 𝑄∈Θ
𝑋𝑄 ·

∑
𝑖Θ(𝑃𝑖 , 𝑄)++ (𝐵)

=
∑S��

𝑖

∫ 𝑄∈Θ
𝑋𝑄 · Θ(𝑃𝑖 , 𝑄)++

sums commute with coends

=
∑S��

𝑖

(∫ 𝑄∈Θ
𝑋𝑄 · Θ(𝑃𝑖 , 𝑄)

)
++
−++ preserves colimits

=
∑S��

𝑖
𝑋𝑃𝑖 ++ by the codensity formula

=

(∑S
𝑖 𝑋𝑃𝑖

)
++
−++ preserves coproducts as a left adjoint

= 1 +∑S𝑖 𝑋𝑃𝑖 + 1 by definition of −++
Above, (𝐴) is computed in S��, which is justified by the isomor-

phism (PshΘ)�� � [Θ,S��] and the fact that coends are computed

pointwise. For (𝐵), by combinatorics onΘ, we have an isomorphism

of spaces

Θ(𝑃, S𝑄) � 1 +∑𝑖Θ(𝑃𝑖 , 𝑄) + 1 =
∑

𝑖Θ(𝑃𝑖 , 𝑄)++
and we conclude. □

Proof of Corollary 9. By Lemma 8, we have

𝐴0 ≡ ♭(よ[] → 𝐴) = ♭(1→ 𝐴) = ♭𝐴 □

Proof of Lemma 11. We have

♭(hom𝐴 (𝑥,𝑦)) = ♭(1→ hom𝐴 (𝑥,𝑦))
= ♭(S1→�� (𝐴, 𝑥,𝑦)) by Postulate 5

= ♭(Σ(𝑎 : 𝐴1) .(src (𝑎) = 𝑥) × (tgt (𝑎) = 𝑦))
by definition of bipointed maps

= Σ(𝑎 : 𝐴1) .(src (𝑎) = 𝑥) × (tgt (𝑎) = 𝑦)
The last line is due to the fact that 𝐴1 is discrete and discrete types

are closed under products [57, Lemma 8.4] and identity types [57,

Lemma 8.5]. □

Proof of Theorem 19. Let us first show that 𝐴 is Segal (Defini-

tion 14). Since 𝐴 is (cellularly) discrete, this amounts to show that

the constant map ♭𝐴→ ♭(⟨𝑃⟩ → 𝐴) is an equivalence. We reason

by induction on the pasting scheme 𝑃 ≡ [𝑃1, · · · , 𝑃𝑛]. Note that for
any index 𝑖 , we have

♭(S⟨𝑃𝑖⟩ → 𝐴)
= ♭ (Σ(𝑎, 𝑏 : 𝐴) .⟨𝑃𝑖⟩ → hom𝐴 (𝑎, 𝑏)) by Postulate 5

= Σ(𝑎,𝑏 : ♭𝐴) .let 𝑢♭, 𝑣♭ = 𝑎,𝑏 in ♭(⟨𝑃𝑖⟩ → hom𝐴 (𝑢, 𝑣))
because ♭ preserves Σ-types [57, Lemma 6.8]

= Σ(𝑎,𝑏 : ♭𝐴) .let 𝑢♭, 𝑣♭ = 𝑎,𝑏 in ♭(⟨𝑃𝑖⟩ → 𝑢 = 𝑣)
by Lemma 18

= ♭ (Σ(𝑎, 𝑏 : 𝐴) .𝑎 = 𝑏)
by induction hypothesis and [57, Lemma 6.8]

= ♭𝐴 by contractibility of singletons [59, Section 3.11]

Using the universal property of ⟨𝑃⟩, a map ♭(⟨𝑃⟩ → 𝐴) is equiva-
lently a cocone

1 1 1 · · · 1 1

S⟨𝑃1⟩ S⟨𝑃2⟩ S⟨𝑃𝑛⟩

𝐴

left right left right left right

𝑓1
𝑓2 𝑓𝑛
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where, by the above, each 𝑓𝑖 amounts to taking a point 𝑎𝑖 in 𝐴,

and the commutation of the squares to equalities 𝑎𝑖 = 𝑎𝑖+1, from
which we see that this data is contractible, and thus amounts to

a point in 𝐴. This first part proves that any crisp discrete type 𝐴

is a Segal one. Finally, we show that 𝐴 is complete (Definition 15).

By discreteness of 𝐴, for all 𝑛 ∈ N, we have 𝐴𝑛 ≃ 𝐴0, so that the

square of Lemma 16 is a pullback. □

Proof of Proposition 21. For the first assertion, it follows di-

rectly from the fact that we have (𝜎∗𝑑)♭ 𝑠 = (𝑑♭ ◦よ𝜎) 𝑠 , for any
𝑃,𝑄, 𝜎, 𝑑, 𝑠 of expected type. We now prove the second assertion.

First, we show that the fiber of 𝜑 is a proposition. Given a map

𝑓 :

(
Σ(𝑃 : PS).Σ(𝑐 : 𝐴𝑃 ).よ𝑃

)
→ 𝑌

with two preimages 𝑓 † and 𝑓 ‡ : 𝑋 → 𝑌 under 𝜙 , we want to

show that 𝑓 † = 𝑓 ‡. By function extensionality, this amounts to

show Π(𝑥 : 𝑋 ).𝑓 † (𝑥) = 𝑓 ‡ (𝑥). Since 𝑌 is a set, identity types are

propositions, and by Lemma 20, we may show instead:

Π(𝑅 : PS).Π(𝑐 : 𝑋𝑅).Π(𝑠 :よ𝑅).𝑓 † (𝑐♭ 𝑠) = 𝑓 ‡ (𝑐♭ 𝑠)
This holds because, by assumption, both handsides of the equality

are identical to 𝑓 (𝑅, 𝑐, 𝑠). We have shown that the fibers of 𝜑 are

propositions, it remains to show that they are inhabited. In order

for a factorization 𝑓 † : 𝑋 → 𝑌 of 𝑓 to be well-defined, we only

have to show that 𝑓 (𝑃, 𝑐, 𝑠) = 𝑓 (𝑄,𝑑, 𝑡) whenever 𝑐♭𝑠 = 𝑑♭𝑡 . That

is Π(𝑣 : 𝑉 ).Φ(𝑣) where 𝑉 is

Σ(𝑃,𝑄 : PS).Σ(𝑐 : 𝑋𝑃 ).Σ(𝑑 : 𝑋𝑄 ).Σ(𝑠 :よ𝑃).Σ(𝑡 :よ𝑄) .𝑐♭ 𝑠
and is thus equal to 𝑑♭ 𝑡 , and

Φ(𝑃,𝑄, 𝑐, 𝑑, 𝑠, 𝑡) ≡ (𝑓 (𝑃, 𝑐, 𝑠) = 𝑓 (𝑄,𝑑, 𝑡))
We have that Φ is a proposition because 𝑌 is a set, so we may apply

Lemma 20 once again. We thus have to prove Φ(𝑚♭𝑖) for some

𝑚 : ♭(よ𝑅 → 𝑉 ) and 𝑖 :よ𝑅. Using the discreteness of PS, the idem-

potence of ♭ and the fully-faithfulness ofよ, we reformulate the goal

as the fact that we have 𝑓 (𝑃, 𝑐, (よ𝑠) (𝑖)) = 𝑓 (𝑄,𝑑, (よ𝑡) (𝑖)) when-
ever 𝑠∗𝑐 = 𝑡∗𝑑 for every 𝑅, 𝑃,𝑄 : PS, 𝑐 : 𝑋𝑃 , 𝑑 : 𝑋𝑄 , 𝑠 : 𝑅 →PS 𝑃 and

t: 𝑅 →PS 𝑃 . But then, both handsides of the equality in the target

are equal to 𝑓 (𝑅, 𝑠∗𝑐, 𝑖), whence the result. □

Proof of Proposition 29. By induction on 𝑃 : PS, we show the

following more general property: for every natural number 𝑛 and

pasting scheme 𝑄 , we have ♭(S𝑛 ⟨𝑃⟩ →よ𝑄) ≃ ♭(よS
𝑛𝑃 →よ𝑄).

Suppose given a pasting scheme 𝑃 ≡ [𝑃1, · · · , 𝑃𝑚] such that the

property holds for every 𝑃𝑖 . We have

♭(S𝑛 ⟨𝑃⟩ →PS よ𝑄)
= ♭(. . . ⊔S𝑛1 S𝑛+1⟨𝑃𝑖⟩ ⊔S𝑛1 . . .→よ𝑄)

because S preserves pushouts

= . . . ×♭(S𝑛1→よ𝑄 ) ♭(S𝑛+1⟨𝑃𝑖⟩ →よ𝑄) ×♭(S𝑛1→よ𝑄 ) . . .

by universal property of pushouts

= . . . ×♭(よO𝑛→よ𝑄 ) ♭(よS
𝑛+1𝑃𝑖 →よ𝑄) ×♭(よO𝑛→よ𝑄 ) . . .

by induction hypothesis

= . . . ×♭(O𝑛→𝑄 ) ♭(S𝑛+1𝑃𝑖 → 𝑄) ×♭(O𝑛→𝑄 ) . . .

becauseよ is faithful

= ♭(よS
𝑛𝑃 →PS よ𝑄) by Lemma 6 andよ full and faithful

Specializing to the case 𝑛 = 0 yields the desired isomorphism. □

Proof of Lemma 31. Let us show the property for pullbacks. We

have

♭(よ𝑃 → 𝐵 ×𝐴 𝐶)
= ♭((よ𝑃 → 𝐵) ×よ𝑃→𝐵 (よ𝑃 → 𝐶)) by universal property

= ♭(よ𝑃 → 𝐵) ×♭(よ𝑃→𝐵) ♭(よ𝑃 → 𝐶) by [57, Theorem 6.10]

The property for sums is precisely Postulate 7. □

Proof of Lemma 32. The property for pullbacks can be shown as

follows:

(𝐵 ×𝐴 𝐶)≃𝑛+1 ≃ ♭(𝐸𝑛+1 → 𝐵 ×𝐴 𝐶) by Lemma 16

≃ ♭((𝐸𝑛+1 → 𝐵) ×𝐸𝑛+1→𝐴 (𝐸𝑛+1 → 𝐶))
by universal property

≃ ♭(𝐸𝑛+1 → 𝐵) ×♭(𝐸𝑛+1→𝐴) ♭(𝐸𝑛+1 → 𝐶)
by [57, Theorem 6.10]

≃ 𝐵≃𝑛+1 ×𝐴≃𝑛+1 𝐶
≃
𝑛+1

For sums, according to Lemma 31, an 𝑛-cell 𝑓 of 𝐴 + 𝐵 is either

a 𝑛-cell of 𝐴 or a 𝑛-cell of 𝐵. Then the data of a left (resp. right)

inverse of 𝑓 in 𝐴 + 𝐵 will factor through the same component as 𝑓 .

Hence 𝑓 will be invertible if and only if it is as a cell of 𝐴 or as a

cell of 𝐵. □

Proof of Proposition 35. Let us first show that 𝐴 + 𝐵 is Segal.

Given 𝑃 : PS, we have

♭(⟨𝑃⟩ → 𝐴 + 𝐵)
= ♭((⟨𝑃⟩ → 𝐴) + (⟨𝑃⟩ → 𝐵)) by Lemma 34

= ♭(⟨𝑃⟩ → 𝐴) + ♭(⟨𝑃⟩ → 𝐵) by [57, Theorem 6.21]

= 𝐴𝑃 + 𝐵𝑃 by Segalness of 𝐴, 𝐵

= (𝐴 + 𝐵)𝑃 by Lemma 31

For completeness, given 𝑛 : N, we have

(𝐴 + 𝐵)𝑛 = (𝐴𝑛 + 𝐵𝑛) by Lemma 31

= (𝐴≃𝑛+1 + 𝐵≃𝑛+1) by completeness of 𝐴, 𝐵

= (𝐴 + 𝐵)≃𝑛+1 by Lemma 32

and we conclude. □

B Semantics of CellTT
In this appendix, we present the semantics of the type theory we

have introduced, thus providing motivation for its axioms and their

soundness.

B.1 Cellular spaces
We consider a model in simplicial presheaves over Θ, equipped with

the Reedy model structure [28, Chapter 15], relative to the Quillen

model structure on Δ̂, which coincides with the injective model

structure [9]. We write sPsh(Θ) for this model category. We write ≃
for the equivalence relation generated weak equivalences (i.e. exis-

tence of a zig-zag of weak equivalences) and � for isomorphism.

We write よ : Θ ↩→ Θ̂ ↩→ sPsh(Θ) for the Yoneda embedding

and recall the most useful already known properties of this model

structure, which may be found in [9, 28, 41, 50, 56].

Any object of sPsh(Θ) is cofibrant, and cofibrations are the

monomorphisms, see [50, Section 2.6] and [9, Proposition 3.15].
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An object of sPsh(Θ) is discrete when it is set valued: any such

object is fibrant [50, Section 2.6]. As in any Reedy category, a

map 𝑓 : 𝐴 → 𝐵 in sPsh(Θ) is a fibration if and only if, for each

𝑃 ∈ Ob(Θ), the induced map 𝐴𝑃 → 𝐵𝑃 ×𝑀𝑃𝐵 𝑀𝑃𝐴 is a Kan fibra-

tion, where 𝑀𝑃𝑋 = lim(Θ↓𝑃 )op (𝑋 | (Θ↓𝑃 )op) is the matching object
of 𝑋 [28, Definition 15.3.3]. Any two objects 𝑋,𝑌 of sPsh(Θ) have
a mapping space Map(𝑋,𝑌 ) ∈ Δ̂ and an internal Hom denoted

Hom(𝑋,𝑌 ) in sPsh(Θ). Moreover, Map(よ𝑃 ×𝑋,𝑌 ) = Hom(𝑋,𝑌 )𝑃
for any 𝑃 ∈ Θ, and Map(𝑋,𝑌 ) = Hom(𝑋,𝑌 )0 are the global sec-
tions of Hom(𝑋,𝑌 ), see [50, Section 2.4] and [28, Section 11.7].

The presheaf Map(𝑋,𝑌 ) is fibrant as soon as 𝑌 is because every

object is cofibrant in sPsh(Θ) [28, Proposition 9.3.1]. The category

sPsh(Θ) is a model of intentional type theory with dependent sums,

dependent product, identity types, pushout types, truncations and

a univalent universe for each innaccessible cardinal above ℵ0 [56,
Theorem 6.4]. We will call set any discrete simplicial set. Since

limits and colimits are computed objectwise, sets are stable under

limits and colimits.

The following lemma is useful to construct fibrations and thus

interpret types. Namely, we recall that a type 𝐴 should be inter-

preted as a fibrant object ⟦𝐴⟧, and more generally Γ ⊢ 𝐴 (a type 𝐴

in a context Γ) as a fibration ⟦𝐴⟧ → ⟦Γ⟧.

Lemma 36. Any map 𝑓 : 𝐴→ 𝐵 between discrete objects in sPsh(Θ)
is a fibration.

Proof. First, notice that if 𝑋 is discrete, then for any 𝑃 ∈ Θ, we
have that 𝑀𝑃𝑋 is a set, as a limit of sets. Because of this, if 𝐴

and 𝐵 are discrete then so is 𝐵𝑃 ×𝑀𝑃𝐵 𝑀𝑃𝐴. Therefore, the map

𝐴𝑃 → 𝐵𝑃 ×𝑀𝑃𝐵 𝑀𝑃𝐴 is a Kan fibration as a map between discrete

simplicial sets. □

B.2 Semantics of CellTT
B.2.1 Semantics of PS (Postulate 1). By Lemma 36, any objectwise

discrete presheaf is a fibrant object. We can thus model the type PS
of pasting schemes as the constant presheaf ⟦PS⟧ ≡ 𝑃 ↦→ Ob(Θ),
which is objectwise discrete.

B.2.2 Semantics of 𝑃 →PS 𝑄 (Postulate 1). We should model the

type family (𝑃 →PS 𝑄)𝑃,𝑄 as a fibration over ⟦PS⟧2. By Lemma 36,

it is enough to model 𝑃 →PS 𝑄 for each 𝑃,𝑄 ∈ ⟦PS⟧, which can be

done by ⟦𝑃 →PS 𝑄⟧ ≡ HomΘ (𝑃,𝑄).

B.2.3 Semantics ofよ : PS→U (Postulate 2). We now consider

the Yoneda embedding introduced in Postulate 2. Using Lemma 36,

it suffices to give an interpretation ⟦よ𝑃⟧ as a set valued presheaf

for each 𝑃 , which we define as ⟦よ𝑃⟧ ≡ よ𝑃 , the representable

functor associated to 𝑃 . The interpretation ⟦よ⟧ is now given by

the fibration ∐
𝑃 ∈Ob(Θ)

よ𝑃 → Ob(Θ)

We should also give, for each 𝜎 : 𝑃 →PS 𝑄 , a map

⟦よ𝜎⟧ :よ𝑃 →よ𝑄

which is given byよ𝜎 and the semantics ofよ is therefore actually

given by the Yoneda embedding. In particular, by functoriality of

よ : Θ → sPsh(Θ), it shows that the equality rules postulated in

Postulate 2 hold on the nose: they could even be postulated as strict

equalities.

For 𝑃 and 𝑄 pasting schemes, ⟦𝑃 →PS 𝑄⟧ is a constant discrete
presheaf with value HomΘ (𝑃,𝑄), and ♭(よ𝑃 →よ𝑄) is interpreted
as the constant presheaf whose value is Hom(よ𝑃,よ𝑄)0. Both
coincide since, by the Yoneda lemma, we have

Hom(よ𝑃,よ𝑄)0 =Map(よ𝑃,よ𝑄) ≃ HomΘ (𝑃,𝑄)
thus justifying the last point of Postulate 2.

B.2.4 Discreteness (Postulate 3). Recall that ♭ is interpreted as the

endomorphism of sPsh(Θ) which to a presheaf 𝑋 associates the

constant presheaf (𝑃 ↦→ 𝑋0). A type interpreted as 𝑋 in sPsh(Θ) is
thus ♭-discrete whenever the map ♭𝑋 → 𝑋 is a weak equivalence.

That is, when for any 𝑃 ∈ Ob(Θ), the map 𝑥 ↦→ !
∗𝑥 : 𝑋0 → 𝑋𝑃 is a

weak equivalence of simplicial sets, where ! : 𝑃 → [] is the terminal

arrow in Θ. On the other hand, the same type will be cellularly

discrete whenever the maps

𝑋𝑄 → Map(よ𝑃 ×よ𝑄,𝑋 )
are weak equivalences for each 𝑃 and 𝑄 . By specializing this last

condition to𝑄 = [], we see that cellular discrete types are ♭-discrete.
We now focus on the converse implication.

Definition 37. Let 𝑃,𝑄 ∈ Ob(Θ). We writeD𝑃,𝑄 (orD for short) for

the category of elements ofよ𝑃 ×よ𝑄 ∈ Θ̂. The categoryD has as

objects the spans 𝑃 𝑅 𝑄
𝜎 𝜏

and as morphisms the commutative

diagrams

𝑃

𝑅1 𝑅2

𝑄

𝜎1

𝜏1

𝜌

𝜎2

𝜏2

We write 𝐹𝑃,𝑄 : D → Psh(Θ) ↩→ sPsh(Θ) for the functor sending
such a morphism in D toよ𝜌 :よ𝑅1 →よ𝑅2.

We refer to [28, Definition 15.10.1] for the notion of category with
fibrant constants.

Lemma 38. The category D is Reedy and has fibrant constants.

Proof. The category D is Reedy as a category of elements of a

presheaf over the Reedy category Θ [39, Proposition 1.1.2.6]. More

precisely, the degree of 𝑃 ← 𝑅 → 𝑄 is defined as the degree of 𝑅,

and the increasing (resp. decreasing) morphisms in D are those

which are increasing (resp. decreasing) in Θ.
In order to see that D has fibrant constants, it is enough to

show that for every object 𝛼 ∈ D the category 𝜕(𝛼 ↓ ←−D) is either
empty or connected [28, Proposition 15.10.2]. Let 𝑋 be the presheaf

よ𝑃 ×よ𝑄 (seen as a set valued presheaf), we will in fact show

this result for 𝑋 any such presheaf and D its category of elements.

Suppose 𝛼 : 𝑋𝑃 is a 𝑃-cell of 𝑋 . Then an object of 𝜕(𝛼 ↓ ←−D) is the
choice of a decomposition 𝛼 =

←−𝜎 ∗𝛼 ′ for some 𝜎 a strictly decreasing

morphism of Θ and 𝛼 ′ another cell of 𝑋 .

– If 𝛼 is non-degenerate, then there is no-such decomposition,

hence 𝜕(𝛼 ↓ ←−D) is empty.

– In the other case, there is a unique decomposition 𝛼 =
←−𝜎 ∗𝛼 ′

where𝛼 ′ is non-degenerate and𝜎 strictly decreasing. Hence,

for any other object 𝛼 =
←−𝜏 ∗𝛽 in 𝜕(𝛼 ↓ ←−D), we may decom-

pose uniquely 𝛽 as
←−𝛾 ∗𝛽 ′ where 𝛽 ′ is non-degenerate and



A cellular type theory

←−𝛾 is decreasing. By uniqueness of such decompositions, it

follows that
←−𝜎 =

←−𝛾 ◦ ←−𝜏 and 𝛽 ′ = 𝛼 ′. That is, there is a
(unique) commutative diagram

𝑋

よ𝑄

よ𝑃

よ𝑅

𝛽

よ←−𝛾

𝛼

よ←−𝜏

よ←−𝜎

𝛼 ′

Hence, the decomposition 𝛼 =
←−𝜎 ∗𝛼 ′ is a terminal object in

𝜕(𝛼 ↓ ←−D), so the matching category is connected. □

Lemma 39. Let 𝑅 ∈ Θ and consider the colimit

𝜕𝑅 ≡ colim(𝑄→𝑅) ∈𝜕 (−→Θ↓𝑅)よ𝑄

Then the canonical map 𝜕𝑅 → よ𝑅 is a monomorphsim, identify-
ing 𝜕𝑅 with the subpresheaf of morphisms 𝑓 : 𝑄 → 𝑅 which factors
through a strictly increasing morphism.

Proof. Because colimits are computed pointwise and monomor-

phisms are also pointwise, we show that the map (𝜕𝑅)𝑃 → (よ𝑅)𝑃
is injective for each 𝑃 ∈ Ob(Θ). We use the explicit description

of (𝜕𝑅)𝑃 as the quotient of

∐
−→𝜎 :𝑄→𝑅 HomΘ (𝑃,𝑄) under the rela-

tion ∼ such that (−→𝜎 ◦ −→𝜏 , 𝑓 ) ∼ (−→𝜎 ,−→𝜏 ◦ 𝑓 ) for any 𝜏 ∈ −→Θ : we have

that the canonical map (𝜕𝑅)𝑃 → (よ𝑅)𝑃 sends the class [(−→𝜎 , 𝑓 )] to
−→𝜎 ◦ 𝑓 . We then see that the image of (𝜕𝑅)𝑃 is the set of morphisms

𝑃 → 𝑅 which factor through a strictly increasing morphism
−→𝜎 .

We now show the injectivity. Suppose there is a morphism

ℎ : 𝑃 → 𝑅 such that ℎ =
−→𝜎 ◦ 𝑓 =

−→𝜏 ◦ 𝑔 for some strictly in-

creasing morphisms
−→𝜎 and

−→𝜏 . Then factorizing 𝑓 as

−→
𝑓 ◦←−𝑓 and 𝑔

as
−→𝑔 ◦←−𝑔 , we get −→𝜎 ◦ −→𝑓 =

−→𝜏 ◦ −→𝑔 and

←−
𝑓 =
←−𝑔 by uniqueness of the

factorization of ℎ. Hence, there is a chain of identifications

(−→𝜎 , 𝑓 ) = (−→𝜎 ,−→𝑓 ◦←−𝑓 ) ∼ (−→𝜎 ◦ −→𝑓 ,←−𝑓 )
= (−→𝜏 ◦ −→𝑔 ,←−𝑔 ) ∼ (−→𝜏 ,−→𝑔 ◦←−𝑔 )
= (−→𝜏 , 𝑔) □

Lemma 40. The nerve ND of the category D is contractible.

Proof. Recall that the category D𝑃,𝑄 is the comma Θ/よ𝑃 ×よ𝑄 .

The category Θ is a strict test category [18, Example 5.12] and thus

totally aspherical [18, Theorem 2.8], which implies precisely the

contractibility of D𝑃,𝑄 . □

We can thus justify Postulate 3:

Theorem 41. Both notions of discreteness coincide.

Proof. We already have seen the first direction in Section B.2.4,

and thus focus on the other one. Suppose that ♭𝑋 → 𝑋 is a weak

equivalence for some fibrant object 𝑋 (we assume 𝑋 to be fibrant

because it models a type in the empty context). Then, for each

𝑃 ∈ Ob(Θ), we have a weak equivalence 𝑋0 → 𝑋𝑃 . Recall that we

want to show that the map 𝑋0 → Map(よ𝑃 ×よ𝑄,𝑋 ) is a weak
equivalence.

We have seen in Lemma 38 thatD is Reedywith fibrant constants.

Moreover, for any object 𝛼 ≡ (𝑃 ← 𝑅 → 𝑄), the latching category

𝜕(−→D ↓ 𝛼) is isomorphic to 𝜕(−→Θ ↓ 𝑅), identifying the latching map

𝐿𝛼𝐹𝑃,𝑄 → よ𝑅 with the canonical map 𝜕𝑅 → よ𝑅, which is a

cofibration according to Lemma 39. Hence, by [28, Theorem 19.9.1],

we have a weak equivalence

hocolimD 𝐹𝑃,𝑄
∼→ colimD 𝐹𝑃,𝑄 � よ𝑃 ×よ𝑄

Then, by [28, Theorem 19.4.4] (which applies because every object

is cofibrant), we have a weak equivalence

Map(よ𝑃 ×よ𝑄,𝑋 ) ≃ holimDop Map(𝐹𝑃,𝑄 , 𝑋 )

Moreover, there is for each 𝛼 ≡ (𝑃 ← 𝑅 → 𝑄) a weak equivalence

Map(1, 𝑋 ) � 𝑋0 ≃ 𝑋𝑅 � Map(𝐹𝑃,𝑄 (𝛼), 𝑋 )

between fibrant objects (recall that 𝑋0 and 𝑋𝑅 are fibrant by [28,

Proposition 18.5.3]). Hence, by [28, Theorem 18.5.3], there is a weak

equivalence

holimDop Map(1, 𝑋 ) ≃ holimDop Map(𝐹𝑃,𝑄 , 𝑋 )

By the previous reasoning, the righthand object is weakly equiva-

lent to Map(よ𝑃 ×よ𝑄,𝑋 ). Similarly, we have

holimDop Map(1, 𝑋 ) ≃ Map(hocolimD 1, 𝑋 )

by [28, Theorem 19.4.4]. Finally, by definiton of the injective struc-

ture on sPsh(Θ), and [28, Propositions 9.3.1 and 9.3.2], the pair of

adjoint functors

Δ̂ sPsh(Θ)

const

⊥
ev0

is a Quillen pair, so const preserves homotopy colimits [28, Theo-

rem 19.4.5]. In particular, by [28, Proposition 18.1.6], we have

hocolimD 1 ≃ const(NDop) ≃ 1

because ND in contractible by Lemma 40. Whence the weak equiv-

alence

𝑋0 → Map(よ𝑃 ×よ𝑄,𝑋 ) □

B.2.5 Suspension functor in sPsh(Θ) (Postulate 4). Let Θ�� be the

category of bipointed pasting schemes and points-preserving maps,

and similarly let sPsh(Θ)�� denotes the simplicial category of bi-

pointed simplicial presheaves over Θ (it is cocomplete, and even a

model category [31, Proposition 1.1.8]). We may construct a sus-

pension functor S : sPsh(Θ) → sPsh(Θ)�� by Kan-extending the

suspension operation よ ◦ S : Θ → Θ�� ↩→ sPsh(Θ)��, as in [39,

Section 4.2.1.11]. By construction, this extension restricts (up to a

canonical isomorphism) toよ◦S on the subcategoryΘ ↩→ sPsh(Θ),
which yields the intertwining map.

B.2.6 Hom functor as a right adjoint of S (Postulate 5). We oberve

that this Kan extension admits a right adjoint, which sends the

bipointed presheaf (𝑋, 𝑎, 𝑏) to Hom𝑋 (𝑎, 𝑏) defined by

Hom𝑋 (𝑥0, 𝑥1)𝑃 ≡ Map�� (Sよ𝑃, (𝑋, 𝑥0, 𝑥1))

where Map�� denotes the simplicial mapping space of bipointed

maps, see also [39, Section 4.2.1.17].
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B.2.7 Quillen adjunction and pushout preservation. We make the

further observation that Hom sends a map of bipointed fibrant

presheaves 𝑓 : (𝑋, 𝑥0, 𝑥1) → (𝑌,𝑦0, 𝑦1) to the map

Hom𝑋 (𝑥0, 𝑥1) → Hom𝑌 (𝑦0, 𝑦1)
defined objectwise by postcomposition

𝑓∗ : Map�� (Sよ𝑃, (𝑋, 𝑥0, 𝑥1)) → Map�� (Sよ𝑃, (𝑋, 𝑥0, 𝑥1))
This is a fibration (resp. a trivial fibration) when 𝑓 is a fibration

(resp. a trivial fibration) [28, Propositions 9.3.1 and 9.3.2]. The ad-

joint pair (S ⊣ Hom) is thus a Quillen pair [28, Proposition 8.5.3].

Such a Quillen adjunction should yield the right notion of adjunc-

tion up to homotopy, and also ensures that S : sPsh(Θ) → sPsh(Θ)��
preserves homotopy colimits, thus justifying the last assumption

in Postulate 4.

B.2.8 Connectedness of representables (Postulate 7). If ⟦𝑋⟧ is a
(fibrant) object of sPsh(Θ) interpreting a type 𝑋 :: U, then the

interpretation of 𝑋𝑃 for some 𝑃 : PS is given by

⟦𝑋𝑃⟧ =Map(よ𝑃, ⟦𝑋⟧) � ⟦𝑋⟧𝑃
However, because sums are computed objectwise, the 𝑃-cells of

a sum are canonically equivalent to the sums of the 𝑃-cells, see

for instance [42, Section 5.1.2]. This justifies the connectedness of

representable types.

B.2.9 Truncations are computed objectwise (Theorem 24). Let 𝑋 be

a fibrant object in sPsh(Θ), by definition [42, Definition 5.5.6.1],𝑋 is

𝑛-truncated iff all the mapping spaces into it are 𝑛-truncated as Kan

complexes. Note that this implies that each 𝑋𝑃 ≃ Map(よ𝑃,𝑋 ) is
𝑛-truncated. And conversely, if each𝑋𝑃 is𝑛-truncated, then because

every other object 𝑌 in sPsh(Θ) is a colimit of representables, the

mapping space Map(𝑌,𝑋 ) is a limit of 𝑛-truncated Kan complexes,

so that it is 𝑛-truncated [42, Proposition 5.5.6.5]. As a consequence,

truncations may be computed objectwise.

B.2.10 Effective epimorphisms in sPsh(Θ). An effective epimor-

phism in sPsh(Θ) is the same as an effective epimorphism in its

underlying 1-topos [42, Proposition 7.2.1.14], which is given by

its homotopy category [42, Proposition 5.5.6.2], that is Θ̂, where
the truncation is computed objectwise. Moreover, we know that

effective epimorphisms coincide with epimorphisms in a 1-topos,

and more precisely to objectwise surjections in the case of Θ̂.

B.2.11 Semantics of coverage (Postulate 8). Recall that PS is inter-

preted as a constant set valued presheaf. Writing 𝑋 for the presheaf

modeling the type 𝑋 of Postulate 8, the sigma type

Σ(𝑃 : PS).Σ(𝑐 : 𝑋𝑃 ).よ𝑃

will be interpreted as the coproduct∐
𝑃∈Ob(Θ)

𝑋𝑃 ×よ𝑃

Hence the map ∐
𝑃∈Ob(Θ)

𝑋𝑃 ×よ𝑃 → 𝑋

will be an effective epimorphism if and only if all the maps∐
𝑃 ∈Ob(Θ)

𝜋0 (𝑋𝑃 ) × HomΘ (𝑄, 𝑃) → 𝜋0 (𝑋𝑄 )

are surjective for 𝑄 ∈ Ob(Θ). Indeed, this is implied by surjectivity

of the 𝑄-th component

𝜋0 (𝑋𝑄 ) × HomΘ (𝑄,𝑄) → 𝜋0 (𝑋𝑄 ) .
This thus motivate our postulate of

Σ(𝑃 : PS) .Σ(𝑐 : 𝑋𝑃 ) .よ𝑃 → 𝑋

being an effective epimorphism, assuming the type theoretic effec-

tive epimorphisms to indeed be modeled by effective epmorphisms

in the higher categorical semantic.

B.2.12 Higher categories (Definition 17). Our definitions of Segal-
ness (Definition 14) and completenness (Definition 15) mirrors

the known definition of such concepts (see for instance [39, Sec-

tion 4.2.1.6], where higher categories are defined as a localization

of sPsh(Θ)). We thus expect that our type theoretic definition of

(∞, 𝜔)-categories coincide with the usual one in the above de-

scribed model, although detailed verification is left for future work.

C Codiscrete types
In this section, we suppose that our type theory is equipped with a ♯

modality, as axiomatized in [57, Section 3], and explore its properties

in our setting. In terms of semantics, the functor 𝑟 : Psh(Θ) → S of

Section 3.3 also admits a right adjoint, thus inducing a monad ♯ on

Psh(Θ) which gives rise to an adjoint modality ♯ ⊢ ♭ on types. The

♯-modal types (the types 𝐴 for which the canonical map 𝐴→ ♯𝐴 is

an equivalence) are called codiscrete. We will see in Theorem 44 that

their cells are entirely determined by their 0-skeleton. They thus

have contractible hom-types and are to be thought as a directed

counterpart of (−1)-truncated types. Among their properties, they

form a reflexive subuniverse, and all of them are Segal types.

We recall from [57, Section 3] that a type 𝐴 is codiscrete if and

only if the canonical map𝐴→ ♯𝐴 admits a retraction.We also recall

the following useful fact, where the notion of reflexive subuniverse

is defined in [59, Section 7.7].

Theorem 42. The type of codiscrete types forms a reflexive subuni-
verse, when equipped with the ♯ modality.

In particular, codiscrete types are stable under identity-types, depen-

dent sums and product. Finally, we recall the following fundamental

property, which states that ♭ and ♯ are internally adjoint to each

other, up to flattening [57, Corollary 6.26]:

Theorem 43. Given 𝐴, 𝐵 :: U, we have a natural equivalence

♭(♭𝐴→ 𝐵) ≃ ♭(𝐴→ ♯𝐵)

The following theorem states that all the spaces 𝐴𝑃 of cells in a

type 𝐴 are determined by their 0-skeleton 𝐴0.

Theorem 44. Let 𝐴 :: U be a crisp type, then 𝐴 is codiscrete if
and only if the canonical map ♭よ𝑃 →よ𝑃 induces an equivalence
𝐴𝑃 ≃ ♭(♭よ𝑃 → 𝐴) for every 𝑃 : PS.

Proof. We have that 𝐴 is codiscrete if and only if the canonical

map𝐴→ ♯𝐴 is an equivalence, if and only if the maps𝐴𝑃 → (♯𝐴)𝑃
are equivalences for 𝑃 : PS (by Postulate 6). By Theorem 43, we

have (♯𝐴)𝑃 ≡ ♭(よ𝑃 → ♯𝐴) ≃ ♭(♭よ𝑃 → 𝐴) and we conclude. □

Corollary 45. Given a pasting scheme 𝑃 , we have 𝐴𝑃 = 𝐴𝑚
0
for

some𝑚 : N.
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Proof. Given a pasting scheme 𝑃 , writing 𝑚 for the number of

0-cells inよ𝑃 (this is easily seen to be a finite set by Postulate 2

and the definition of Θ), we have ♭よ𝑃 =𝑚, and therefore we have

𝐴𝑃 ≡ ♭(よ𝑃 → 𝐴)
= ♭(♭よ𝑃 → 𝐴) by Theorem 44

= ♭(𝑚 → 𝐴) by definition of𝑚

=𝑚 → ♭𝐴 since ♭ preserves products [57, Theorem 6.19]

=𝑚 → 𝐴0 by Corollary 9

= 𝐴𝑚
0

and we conclude. □

Lemma 46. Given a codiscrete crisp type 𝐴 :: U and 𝑎, 𝑏 :: 𝐴, the
type hom𝐴 (𝑎, 𝑏) is contractible.

Proof. Using Postulate 6, we may show the contractibility object-

wise. Given 𝑃 : PS, we have

hom𝐴 (𝑎, 𝑏)𝑃
= ♭(Sよ𝑃 →�� (𝐴, 𝑎, 𝑏)) by Postulate 5

= Σ(𝑓 : 𝐴S𝑃 ).let 𝑢♭ = 𝑓 in ♭(𝑢 (left) = 𝑎) × ♭(𝑢 (right) = 𝑏)
by [57, Lemma 6.8]

= Σ(𝑓 : ♭(2→ 𝐴)).let 𝑢 = 𝑓 in ♭(𝑢 (0) = 𝑎) × ♭(𝑢 (1) = 𝑏)
by codiscreteness of 𝐴

= Σ(𝑥,𝑦 : ♭𝐴).(𝑥 = 𝑎♭) × (𝑦 = 𝑏♭) by [57, Theorem 6.1]

= 1 by [59, Lemma 3.11.8]

and we conclude. □

Lemma 47. Given a codiscrete crisp type𝐴 :: U, we have𝐴𝑛+1 ≃ 𝐴≃𝑛+1
for any 𝑛 : N.

Proof. Using Lemma 16 and the definition of E𝑛+1 we compute

𝐴≃𝑛+1. Since 𝐴 is codiscrete, using Theorem 43, one has

𝐴≃𝑛+1 ≃ ♭(♭ E𝑛+1 → 𝐴)
It is therefore enough to show that the map ♭よO𝑛+1 → ♭ E𝑛+1 is
an equivalence, where the source ♭よO𝑛+1 is equivalent to 2. Recall
that E𝑛+1 is the colimit of the diagram

よO𝑛+1 よO𝑛+1

よO𝑛 よS
𝑛 [3] よO𝑛

S
𝑛
! 𝛼𝑛 𝛽𝑛 S

𝑛
!

and that, according to [57, Theorem 6.21], ♭ preserves pushouts. In

the case 𝑛 = 0, we have that ♭ E1 is the colimit of the diagram

2 2

1 4 1

and this colimit is 2. In the case 𝑛 > 0, we have that ♭ E𝑛+1 is the
colimit of the diagram

2 2

2 2 2

id id id id

which is, once again, 2. We deduce that the map ♭よO𝑛+1 → ♭ E𝑛+1
is an equivalence. □

Lemma 48. Any crisp type 𝐴 :: U is a Segal type.

Proof. Since ♭ preserves pushouts [57, Theorem 6.21], we have

that for any 𝑃 ≡ [𝑃1, · · · , 𝑃𝑚] in PS, we have that ♭⟨𝑃⟩ is the colimit

of the diagram

1 1 · · · 1

♭よS𝑃1 ♭よS𝑃2 ♭よS𝑃𝑚

where for each index 𝑖 , we have ♭よS𝑃𝑖 = ♭Sよ𝑃 = 2 by Postulate 4.

Hence ♭⟨𝑃⟩ = Fin𝑚+1 = ♭よ𝑃 . Then, by discreteness of 𝐴, we have

♭(⟨𝑃⟩ → 𝐴) = ♭(♭⟨𝑃⟩ → 𝐴) = ♭(♭よ𝑃 → 𝐴) = 𝐴𝑃 . □

Lemma 49. A codiscrete crisp type 𝐴 :: U is an (∞, 𝜔)-category if
and only if it is a proposition.

Proof. Because 𝐴 is codiscrete, by Corollary 45, for every 𝑃 : PS
we have 𝐴𝑃 = 𝐴𝑚

0
where𝑚 is the number of 0-cells of 𝑃 . Hence, by

Theorem 24, 𝐴 is a proposition iff 𝐴0 is. Given 𝑛 > 0, by Lemma 47

and Corollary 45, we have 𝐴≃𝑛+1 = 𝐴𝑛+1 = 𝐴2

0
= 𝐴𝑛 . The only

obstruction to completeness is thus for 𝑛 = 0, i.e. 𝐴 is complete iff

𝐴≃
1
= 𝐴0. By Lemma 47 and Corollary 45, we have 𝐴≃

1
= 𝐴1 = 𝐴2

0
,

and 𝐴 is thus complete iff the diagonal map 𝐴0 → 𝐴2

0
= 𝐴≃

1
is an

equivalence. This occurs exactly when 𝐴0 is propositional, that is

iff 𝐴 is. □

D (∞, 𝑛)-Categories
We have see in Section 4 that our type theory supports a notion

of (∞, 𝜔)-category. In particular, given 𝑛 : N, we expect that our
type theory also supports a notion of (∞, 𝑛)-category, that is an
(∞, 𝜔)-category where every cell in dimension𝑚 > 𝑛 is (weakly)

invertible. We briefly study this notion here.

Definition 50. Let𝐴 :: U be an (∞, 𝜔)-category. Given𝑛 : N,𝐴 is an

(∞, 𝑛)-category when all its𝑚-cells for𝑚 > 𝑛 are invertible, i.e. the

canonical map 𝐴𝑚 → 𝐴≃𝑚 is an equivalence. An (∞, 0)-category is

sometimes called an∞-groupoid.

Theorem 51. A crisp type 𝐴 :: U is discrete if and only if it is an
∞-groupoid.

Proof. We know from Theorem 19 that any discrete type 𝐴 :: U
is an (∞, 𝜔)-category. By completeness and discreteness we also

have 𝐴≃𝑛+1 ≃ 𝐴𝑛 ≃ 𝐴0 ≃ 𝐴𝑛 for all 𝑛. Hence any discrete type is an

∞-groupoid.
Conversely, suppose 𝐴 :: U is an∞-groupoid. For any 𝑛 : N, by

definition of∞-groupoids and completeness, we have

𝐴𝑛+1 ≃ 𝐴≃𝑛+1 ≃ 𝐴𝑛

We may now prove that 𝐴𝑃 ≃ 𝐴0 by induction on 𝑃 . Supposing

given 𝑃 ≡ [𝑃1, · · · , 𝑃𝑚] such that 𝐴𝑃𝑖 ≃ 𝐴0 for each 𝑖 , we have

𝐴𝑃 = ♭(⟨𝑃⟩ → 𝐴) by Segalness

= 𝐴S𝑃1 ×𝐴0
· · · ×𝐴0

𝐴S𝑃𝑚 because ♭ preserves pullbacks

= Σ(𝑎0, · · · , 𝑎𝑚 : ♭𝐴) . hom𝐴 (𝑎0, 𝑎1)𝑃1×· · ·× hom𝐴 (𝑎𝑚−1, 𝑎𝑚)𝑃𝑚
by S ⊣ hom

= Σ(𝑎0, · · · , 𝑎𝑚 : ♭𝐴) . hom𝐴 (𝑎0, 𝑎1)0 × · · · × hom𝐴 (𝑎𝑚−1, 𝑎𝑚)0
by induction hypothesis
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= Σ(𝑎0, · · · , 𝑎𝑚 : ♭𝐴).♭(𝑎0 = 𝑎1) × · · · × ♭(𝑎𝑚−1 = 𝑎𝑚)
because 𝐴 is an∞-groupoid

= 𝐴0

The map ♭𝐴→ 𝐴 is thus an equivalence by Postulate 6. □

Lemma 52. An (∞, 𝜔)-category 𝐴 :: U is an (∞, 𝑛+1)-category iff
hom𝐴 (𝑎, 𝑏) is an (∞, 𝑛)-category for every 𝑎,𝑏 :: 𝐴.

Proof. Let 𝐴 :: U be a (∞, 𝑛+1)-category and 𝑎, 𝑏 :: 𝐴. Then for

any𝑚 > 𝑛, we have

hom𝐴 (𝑎, 𝑏)𝑚 = ♭(よO𝑚+1→�� (𝐴, 𝑎, 𝑏)) by S ⊣ hom
= ♭(E𝑚+1→�� (𝐴, 𝑎, 𝑏)) by assumption

= ♭(S E𝑚→�� (𝐴, 𝑎, 𝑏)) because S E𝑚 = E𝑚+1

= hom𝐴 (𝑎, 𝑏)≃𝑚 by S ⊣ hom
Conversely, suppose that hom𝐴 (𝑎, 𝑏) are (∞, 𝑛)-categories for all
𝑎, 𝑏 :: 𝐴. Then for any𝑚 > 𝑛

𝐴𝑚+1 = ♭(よO𝑚+1 → 𝐴)

= ♭
(
Σ(𝑎, 𝑏 : 𝐴) .よO𝑚+1→�� (𝐴, 𝑎, 𝑏)

)
= Σ(𝑎,𝑏 : ♭𝐴) .let 𝑢♭, 𝑣♭ = 𝑎,𝑏 in ♭(よO𝑚+1→�� (𝐴,𝑢, 𝑣))

by ♭ commuting to Σ and ×

= Σ(𝑎,𝑏 : ♭𝐴) .let 𝑢♭, 𝑣♭ = 𝑎,𝑏 in hom𝐴 (𝑢, 𝑣)𝑚 by S ⊣ hom

= Σ(𝑎,𝑏 : ♭𝐴) .let 𝑢♭, 𝑣♭ = 𝑎,𝑏 in hom𝐴 (𝑢, 𝑣)≃𝑚
by hypothesis

= Σ(𝑎,𝑏 : ♭𝐴) .let 𝑢♭, 𝑣♭ = 𝑎,𝑏 in ♭(S E𝑚→�� (𝐴,𝑢, 𝑣))
by S ⊣ hom

= ♭(E𝑚+1 → 𝐴) because S E𝑚 = E𝑚+1

= 𝐴≃𝑚+1

and we conclude. □

Theorem 53. (∞, 𝑛)-categories are closed under pullback and co-
product.

Proof. This follows directly from Definition 50, Propositions 33

and 35 and Lemma 32. □
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