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Abstract

Homotopy type theory comes equipped with a canonical semantics
in which types are interpreted as co-groupoids. Over the recent
years, a series of works have started extending this approach in
order to reach a setting in which types can be more generally in-
terpreted as higher categories. In particular, Riehl and Shulman
have introduced the simplicial type theory which can be modeled
in simplicial spaces, where (oo, 1)-categories can be characterized
as those satisfying two properties, namely Segalness and complete-
ness. Here, we follow a similar path, and introduce a type theory
with models in cellular spaces (space-valued presheaves over the
category ©), where we have a notion of (oo, w)-category by impos-
ing two similar conditions, following the ideas of Joyal, Rezk and
Berger. More precisely, our type theory postulates a category of
pasting schemes (which formally axiomatizes the category ©) and
a Yoneda embedding (which ensures that types behave as cellular
spaces). Axiomatizing this requires us to be able to consider the
underlying spaces of cellular spaces: this is made possible thanks
to the presence of a comodality b, reminiscent of Shulman’s crisp
type theory. We introduce a notion of (o, w)-category in this set-
ting and illustrate the applicability of our approach by showing
various results on those, such as the fact that they are stable under
taking sums, finite limits or homs, or that representable types are
categories. We also provide, in appendix, a semantics justifying the
pertinence of our axioms.

CCS Concepts

« Theory of computation — Constructive mathematics; Type
theory.

1 Introduction

1.1 Homotopy and type theory

The investigation of Martin-L6f’s intentional type theory [44] has
revealed that identity types can bear non-trivial information, in the
sense that two proofs of equality are not necessarily themselves
equal. This observation was first formalized by Hofmann and Stre-
icher [30] by constructing a model, where contexts are interpreted
as groupoids, which does not validate the principle of uniqueness
of identity proofs. Later on, Voevodsky and collaborators have in-
troduced homotopy type theory [59], based on a new axiom, called
univalence, validated in a model where contexts are interpreted
as spaces (impersonated by simplicial sets) up to homotopy [33]:
this followed pioneering work interpreting dependent type the-
ory with identity types in model categories [4, 21], and formalizes
the intuition that a type corresponds to a space, a term to a point
in this space, a proof of equality to a path, a proof of equality be-
tween equalities as a homotopy between paths, and so on. This later
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model generalizes the groupoid model, in the sense that, under the
Grothendieck hypothesis [27], spaces correspond to co-groupoids, a
variant of the notion of groupoid comprising higher cells and where
all structural axioms only hold up to higher coherence cells, which
should themselves satisfy coherence laws up. More precisely, types
in Voevodsky’s model are interpreted as Kan complexes, which can
be taken as a definition for co-groupoids in the simplicial setting.
Moreover, it was observed early on that identities equip types in
intentional type theory with a structure of co-groupoid [12, 40, 60]
in the sense of Grothendieck-Batanin-Leinster [6, 27, 36].

The type theory obtained by adding the univalence axiom is
called homotopy type theory because it allows to reason in a syn-
thetic way on homotopy types. Formalizing geometric construc-
tions in this setting is interesting for multiple reasons: the resulting
proofs can be fully detailed and checked in proof assistants such as
Agda or Rocq, all manipulations performed there are invariant up to
homotopy by construction, and they automatically generalize to all
the models of the type theory such as those which can be found in
oo-toposes [58]. Important results have been now formalized in this
setting such as the computation of the 4-th homotopy group of the
2-sphere [12, 38], the Blakers-Massey theorem [2], the stabilization
of higher groups [13], and so on.

1.2 Directed homotopy type theory

More generally than modeling co-groupoids, one would like to have
a variant of type theory where types are (oo, n)-categories, i.e. weak
categories in which morphisms are only invertible starting from di-
mension n, with n possibly being w, in which case we do not require
any morphism to be invertible. These structures appear naturally in
category theory: for instance, the collection of co-groupoids forms
an (oo, 1)-category. On the topological side, (oo, 1)-categories arise
as fundamental categories of directed spaces [20], which are vari-
ants of the notion of fundamental group adapted to a setting where
topological space are equipped with a notion of “time direction”
which allows identifying, among paths, the ones that should be
considered as being properly directed.

From this perspective has emerged the hope for a directed type
theory, which would allow to synthetically consider higher cate-
gories. Early on, it was observed that one cannot expect such a
theory to be defined as a simple variant of dependent type theory.
One reason is that models of such a theory would have to be locally
cartesian closed categories, a property which is not satisfied by the
category of 1-categories (exponentiable functors can be character-
ized as those being Conduché fibrations [19, 22]), nor by higher
categories (for similar reasons). This means the naive hope that
one could come up with a variant of the rules for identity types
which would allow for taking in account directed morphisms is
doomed to fail. This however does not prevent one from crafting
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more creative type theories with dedicated construction in order to
handle directed morphisms, and various investigations have been
made in this direction. A type theory which can be interpreted in
(strict) 2-categories is proposed in [37], and a variant adapted to
bicategories is introduced in [1]: the 1-cells there correspond to
reductions of terms, and the syntax internalizes the operations and
axioms expected to be satisfied in the bicategorical semantics. A
type theory closer to traditional intentional type theory and featur-
ing a form of transport is proposed in [45], where the type theory
is extended with a “core” modality as well as a dualizing operation,
and interpreted in the category of small categories, see also [46, 62]
for related approaches.

More recently, Riehl and Shulman [52] have introduced simpli-
cial type theory, which is a type theory adapted to (oo, 1)-categories,
whose starting point is the introduction of a type corresponding
to a directed interval. The manipulations there are not entirely
synthetic, in the sense that types are not always to be interpreted as
(00, 1)-categories, but rather as simplicial spaces, among which we
can identify categories as complete Segal types, which can roughly
be described as types supporting composition and in which paths
correspond to equivalences. This means that, when defining opera-
tions on categories, one should always make sure that the result
actually is a category (as opposed to homotopy type theory where
we can implicitly suppose that all operations preserve being an
co-groupoid). Nevertheless, many recent developments using this
type theory have shown its applicability for reasoning in a concise
and formal way about (oo, 1)-categories [14, 25, 26, 63, 64]. We note
that, in order to make the type theory useful in practice, it is often
extended with a modality b (and possibly more modalities, based on
crisp type theory [57] or the multimodal extension of intentional
type theory [24]) which can semantically be interpreted as taking
the core of a type, i.e. keeping only its weakly invertible morphisms.
This kind of approach in homotopy type theory originates in the
work of Shulman who introduced crisp type theory [57], and is also
expected to play an important role in the current axiomatization of
higher categories by Cisinski and collaborators [17].

1.3 A fully directed type theory

This work constitutes a first step toward the generalization of the
previous work toward a type theory which is “fully directed”, in
the sense that our type theory contains types which can be iden-
tified to (oo, w)-categories, i.e. weak higher categories, where no
cell is supposed to be invertible. Semantically, our starting point
compared to simplicial type theory consists in replacing simplicial
spaces by ©-spaces. We recall that the category ©, due to Joyal [32],
is the category whose objects are pasting schemes (i.e. formal com-
posites of globes) and morphisms are functors between them. One
can then consider cellular spaces, which are presheaves enriched
in spaces over O, and isolate ®-spaces as being cellular spaces A
which satisfy a Segal-type condition (given a pasting scheme P, the
canonical map from the space Ap to the canonical fibered product
of spaces Ap, should be a weak equivalence) and a completeness
condition (paths in spaces correspond to equivalences). These were
introduced by Rezk as a model for (oo, w)-categories [50, 51]. In the
original definition, the notion of “space” there is axiomatized by
simplicial sets equipped with the Quillen model structure. In fact, by
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restricting to n-dimensional pasting schemes, one obtains a notion
of (oo, n)-category which, for n = 1, coincides with Segal spaces (in
particular ©; is the simplicial category A). It is thus tempting to
try to generalize simplicial type theory in order to accommodate
for cellular spaces: this is precisely the objective of the present
work. This generalization is not immediate: simplicial type theory
is based on a layer of topes which allows considering subshapes
of cubes in which one can encode the simplicial machinery, but
there is no obvious generalization at our disposal in order to encode
the category ©, which must therefore be added axiomatically. In
particular, simplicial type theory features a directed interval type I,
so that 1-cells in a type A correspond to maps I — A, 2-cells to
maps I? — A and so on. This approach would not work in the fully
directed case: all the m-cells of I" are reversible form > 1andn > 1,
and thus maps I" — A only detect reversible n-cells in A.

1.4 Cellular type theory

Our type theory results from several successive extensions of ho-
motopy type theory. We first formally add a type corresponding to
pasting schemes in the type theory, which is made possible thanks
to the nice combinatorial structure governing the category ©. In a
second time, interpreting all our types as cellular presheaves, we ax-
iomatize the Yoneda embedding of © into types, which should give
us access to the spaces of cells in the types by the Yoneda lemma.
In order for this to be possible, we need to have access to a notion
of space, whereas our types are meant to be cellular spaces: this
motivates the introduction of a modality b which restricts a cellular
space to the underlying space, following the principles of crisp type
theory [57]. We claim that the resulting type theoretic framework is
suitable for working synthetically with cellular spaces: in order to
support this, we define weak higher categories and perform several
constructions with them.

1.5 Plan of the paper

We begin by recalling categorical definitions around the © cate-
gory and cellular spaces (Section 2), we then introduce our type
theoretic setting obtained by adding axioms to intuitionistic type
theory (Section 3), and finally we define and study higher categories
(Section 4): in particular, we show that discrete types are categories
(Section 4.3), that the homotopy level of a type is determined point-
wise (Section 4.4), that categories are closed under taking homs
(Section 4.5), that representable types are categories (Section 4.6)
and that categories are stable under finite limits and coproducts
(Section 4.7).

All the proofs omitted in the article can be found in Section A.
The semantics of our type theory is detailed in Section B and we pro-
vide extensions about codiscrete types (Section C) and (oo, n)-cate-
gories (Section D).

2 The category ©

We recall the definition of the category © due to Joyal [32], see
also [8, 18, 43]. Many of the results in this section have been for-
malized in [35].
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2.1 The simplicial and interval categories

We first need to fix some notations and recall basic constructions.
Given a natural number n, we write [n] for the (totally ordered)
set {0,1,...,n}. The simplicial category A is the category whose ob-
jects are the natural numbers and where a morphism f : m — nis
a non-decreasing function [m] — [n]. A simplicial set is a presheaf
over this category. We recall that there is a standard model structure
on the category A of simplicial sets, often called the Kan-Quillen
model structure, whose weak equivalences are the morphisms in-
ducing weak equivalences of topological spaces on the geometric
realizations and whose cofibrations are the monomorphisms [23].
Trivial fibrations are generated by horn inclusions, so that fibrant
objects are precisely Kan complexes.

The category of intervals I is the category whose objects are
natural numbers and morphisms f : m — n are non-decreasing
functions [m + 1] — [n + 1] which preserve the minimal and the
maximal elements. There is an isomorphism A — 7°P which sends
an object n to n (i.e. [n] to [n + 1]) and sends a map f : [m] — [n]
to the map f : [n+ 1] — [m + 1] with is defined on i € [n + 1]
by fV(i) = min{j € [m + 1] | f(j) > i}, see [32] for details. For
instance, consider the following map 3 — 4 in A:

0 1 2 3
NE NN v
0 1 2 3 4
It corresponds to the following map in 7 °P:
0 1 2 3 4
I I N @
0 1 2 3 4 5
Intuitively, one can see an element i in (2) as corresponding to the

interval between the elements (i — 1) and i in (1). We can indeed
superimpose the map (1) (in dotted) with the map (2) as follows:

0 o 1 1 2 2 3 3 4
0 o 1';1\{ 2 2 3.;13 4.;14 5

Moreover, the minimal and maximal elements correspond to the
semi-infinite interval on the left and on the right respectively, which
explains intuitively why we will consider them as “undefined” val-
ues in the definition of morphisms in ® below.

2.2 Pasting schemes

We define the set of pasting schemes as the smallest set closed under
formal products of arbitrary finite arity: this means that for every
natural number n and pasting schemes Py, . . ., P,,, we have a pasting
scheme [P, ..., P,] corresponding to their formal product. More
formally, pasting schemes are the initial algebra of the polynomial
functor X — | |, X™ on Set. Alternatively, pasting schemes can
also be thought of as finite planar trees, sometimes called Batanin
trees [6, 7]. For instance, the tree corresponding to
the pasting scheme [[[[]]], [], [[]. []]] is pictured
on the right. Note that this tree is essentially the
syntax tree of the expression corresponding to the
pasting scheme, which should help understanding

the correspondence between the two representations.

In the following, given a natural number n, we write O,, for the
n-disk pasting scheme [[--- [] - - - ]] obtained by applying n times
[-] to [], and we write [n] for the pasting scheme [[], [],...,[]],
with n copies of []. The dimension dim(P) of a pasting scheme P is
the depth of the corresponding planar tree: it can be defined induc-
tively by dim([P,, ..., P,]) = 1+max; dim(P;) with the convention
dim([]) = 0.

2.3 Globular sets

We write G for the category whose objects are natural numbers
and morphisms are generated by s,,t, : n — n+ 1forn € N,
respectively called source and target maps, subject to the relations
Sn+198Sp = tpe108y and sp1 0ty = tye oty for n € N. We write Q for
the category of presheaves over G, whose objects are also known
as globular sets. Given G € G and an object n € G, we write G,
for the set obtained as the image of n under G, whose elements are
called n-cells, and sf, t,? : Gpy1 — Gy, for the respective images of
the morphisms s, and t,,. We write 1 for the the globular set with
one 0-cell x and no cell of higher dimension (this is not the terminal
one).

A bipointed globular set is a globular set G equipped with two dis-
tinguished 0-cells, or equivalently with two maps left, right : 1 — G.
We write G.. for the corresponding category, with maps preserving
distinguished elements. The forgetful functor G — Q admits a
left adjoint S : G — G., called suspension, sending a globular set G
to the globular set SG defined by (SG)y = {—, +} (with — and +
as distinguished 0-cells) and (SG),+1 = G, with source and target
maps given by s3° (x) = —, 15 (x) = +, $5¢, = s¢ and £5¢, = 17

Any pasting scheme induces a globular set P9 defined induc-
tively by [|9 = 1 and [P;, ..., P,]9 is the colimit of the diagram

SPr 1 s 1 Sy 1 S sy

For instance, we have

(OO 000 16 = T(;)F’_)/_)\‘
N A A

We write Cat,, for the category of (strict) w-categories, which
are globular sets equipped with identities and compositions satis-
fying suitable axioms. By general results about locally presentable
categories [5, Theorem 3.5], the forgetful functor Cat,, — g admits
a left adjoint, constructing the free w-category on a globular set.
Given a pasting scheme P, we write P* for the free w-category on
the globular set PY.

2.4 The category ©

The category © is defined as the full subcategory of Cat,, whose
objects are of the form P* for some pasting scheme P [32]. The
operation —* on pasting schemes is injective [7, 8] so that we may
safely refer to an object of © as a pasting scheme. Given a natural
number n, the category ©, is obtained by restricting © to pasting
schemes of dimension at most n, so that ©® can be recovered as the
inductive limit of the @,,. In particular, for n = 1, the category ©,
coincides with the simplicial category A.



The category ©,4; can be recovered from O, as the wreath
product A ¢ ©,, see [8]. This means that we have the following
inductive description of the morphisms of ©:

Definition 1. The category © is the category where an object is a
pasting scheme and a morphism f : [Py,...,P,] — [Q1,...,0n]
consists of

- amap f:m — ninA,

- foreveryi € [n+ 1] such that 0 < fV(i) < m + 1, a map

fi s Prvy = Qi

Identities and composition are induced by those in A and © (recur-
sively).
For instance, we have f : [Py, P, P3] — [Q1, Q2, O3, Q4] induced by

the function f of (1) and the morphisms f; : P, = Qa, f3 : P, — Qs
and f; : Ps — Q4. This can be pictured as follows:

01 B [3]
UV g g
0 O1 1 Q2 2 €] 3 Q4 4 [4]

The above description should convince the reader that we can imple-
ment data structures in order to describe objects and morphisms of
the category ©. More precisely, both the objects and the morphisms
of this category can be described as inductive types.

A morphism f : P — Q is bipointed when P and Q are both
different from [] and the underlying function in A preserves the
endpoints, i.e. belongs to 7. We write ©_, for the subcategory of ©
with all pasting schemes excepting [] as objects and bipointed
morphisms. We write o; : N — {0, 1} for the “step” function such
that 0;(j) = 0 for j < i and 0;(j) = 1 otherwise. The following
lemma follows immediately from the definition of © :

LEMMA 2. Given pasting schemes P = [Py,...,P,]| and Q, the mor-
phisms f : [Py, ...,Py] — [Q] which are bipointed are of the form
(01, (fi)) for some i with 0 < i < n and morphism f; : P; — Q.
Graphically,

P;

Q

2.5 Operations in ©

2.5.1 Source and target. Given a pasting scheme P there are two
canonical maps left, right : [] — P whose underlying map in A is
the map [0] — [n] respectively sending 0 to 0 and n. For instance,
for P = [P, P, P;] those maps can respectively be pictured as

0 0
left= right = :
v v
0?1)1?2)2?33 0?1?273)3

Thanks to these maps, any pasting scheme can canonically be con-
sidered as being bipointed.

Given k € N, any pasting scheme P induces a pasting scheme
kP, its k-dimensional boundary, along with boundary morphisms
src’lﬁ,, tgtf, : 9P — P, the source and target maps, defined by induc-
tion on k as follows. In the base case, we define 8°P = [] with
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src), = left and tgt%, = right. In the inductive case, we define
F*UPy,...,P,] = [0*Py, ..., 3"P,] with

k+1 k+1

Src[ply._npn] = (idns (Srcgi)lﬁiﬁn) tgt[Pl Pyl = (idn: (tgtljc)i)lﬁiﬁn)

We simply write 9P for %™ P~1 when dim P > 0, and similarly
for src, and tgt,. For instance, for P = [[[[]]], [], [[]. []]], the
map srcp, : 9'P — P corresponds to the inclusion of globular sets
depicted below:

: :—>: : 'p
LA N

It can be observed that any pasting scheme is “acyclic”, in the
sense that if it contains two cells in opposite directions then those
are equal.

LEMMA 3. Suppose given a pasting scheme P together with two mor-
phismsa, b : Opy1 —ps P such that aosrc = botgt and bosrc = aotgt.
Thenaosrc =aotgtanda =b.

2.5.2 Inclusion and retraction. Suppose given a pasting scheme
P = [Py,...,P,]. We have, for any index i, a pair of morphisms
Ci: [Pi] = Pand x; : P — [P;] forming a section-retraction pair,
i.e. m; o C; =id[p,]. Those are defined by

M= (oi, (idpi))

and can respectively be illustrated as follows:

G = (jr—)i+j—1,(idpi))

P;

- jun
~ ~

_ Rl _
P; P;
2.5.3 Suspension. The operation which to a pasting scheme P
associates [P] extends as a functor S : ® — ©_, called suspension. It
is defined on objects by SP = [P] and, given a morphism f : P — Q,
the morphism Sf : [P] — [Q] is the function consisting of the
identity id : 1 — 1 in A and the morphism f.

2.5.4 Wedge sum. Given two pasting schemes P = [Py,...,P,]
and Q = [Q4, ..., Qm] their wedge sum PV Q is the pasting scheme
[P1,..., Py, Q1,...,0Qm] corresponding to the concatenation of lists.

2.6 Cellular spaces and categories

2.6.1 Cellular spaces. A cellular space X is a simplicial presheaf
over the category ©, i.e. amap ® — A, which is fibrant with respect
to the injective model structure, where A is equipped with the Kan-
Quillen model structure. Given P € ©, we write Xp for the image
of P under X: an object of Xp is sometimes called a P-cell of X. The
category © can be shown to be an elegant Reedy category so that
the injective and Reedy model structures on it coincide [9].
Alternatively, the Kan-Quillen model structure on simplicial sets
can be thought of as presenting the co-category S of spaces, whose
objects are co-groupoids, impersonated here by Kan complexes [42,
Section 1.2.16]. With this perspective, the cellular spaces are the ob-
jects of the co-category Psh(®) = Fun(©°P, S) of spatial presheaves
over O, see [42, Section 5.1] for details. As for any presheaf category,
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we have a Yoneda embedding & : © — Psh® [42, Section 5.1.3].
We can define a suspension operation on cellular spaces as the left
Kan extension of the functor X o S along X, which we still write
as S : Psh(©) — Psh(©). This operation actually defines a func-
tor from Psh(©) to the category Psh(®)_ of bipointed presheaves
(equipped with two distinguished []-cells), see [47, Section 4.2],
which preserves colimits. The cells of the suspension can be char-
acterized as follows:

PrRoOPOSITION 4. Given a cellular space X and a pasting scheme
P=[P,...,P,], wehave (SX)p =1+ 3; Xp, + 1.

Simple combinatorics using the definitions of morphisms in © im-
plies the following result, that will be needed in 4.6:

LEMMA 5. If the square on the left is a pushout in ©, then so is the
one on the right.

AL B, sa Ly sp,
ﬁl lgz Sﬁl l592
r r
B —5 C SB; ——> SC
91

LEMMA 6. Given a pasting scheme P = [Py, - - -, Py,], the following
cocone in © is colimiting:

NN SN

Sn+lP1 Sn+1PZ Sn+1Pm

\LS" Co
Nt shp S"Cm

Proor. By unfolding Definition 1, we see that the cocone for n = 0
is colimiting, and deduce the general result by using Lemma 5. O

2.6.2 ©-spaces. A cellular space A is a ©@-space when moreover

— it satisfies the Segal condition: for every pasting schemes P
and Q and n > 0, the canonical map

AS"(P\/Q) — Agnp XAk Aan
is an equivalence,
— it satisfies the completeness condition: for every dimension n,

the canonical map from n-cells to (n+1)-equivalences is a
weak equivalence.

The ©-spaces have been advocated as being a good notion of
(00, w)-category [3, 10, 11, 50, 51]. They are the fibrant objects of a
model structure on the category of simplicial presheaves over © [50].
An alternative definition of the notion of ©-space, closer to the one
that we use subsequently, can be found in [39, Section 4.2.1.6].

3 Type theoretic setting

We consider a type theory based on homotopy type theory, by
which we mean intuitionistic type theory [44] together with the
univalence axiom [59]. More precisely, we suppose that our theory
features dependent sums, dependent products, identity types and
a countable hierarchy of univalent universes. We also suppose
that we have access to the usual basic data types (the terminal
type, booleans, natural numbers, lists, etc.) as well as homotopy
pushouts (this is in particular satisfied if we assume that we have

all higher inductive types) so that we have all finite colimits. In
addition to this now fairly standard material, we suppose that our
type theory is spatial (in the sense that it features a modality b
as explained below) and that we have types corresponding to the
objects and hom-sets of the category ©. Although we cannot recall
all the standard rules in details here, we at least need to fix some
notations, before introducing our axioms.

3.1 Notations

Given ¢ € N, we write U, for the universe at level ¢, or simply U
when size issues can easily be handled. A context T is a finite list
X1 : Ay, ..., Xxn 1 Ay of pairs consisting of a variable and a type. We
write ' ¢ : A for the judgment indicating that ¢ is a term of type A
in the context I'. In particular, a judgment of the form T + A : U
means that A is a type. Given a type A and a type family B: A — U,
we write X(x : A).B(x) (resp. II(x : A).B(x) or (x : A) — B(x))
for dependent sum and dependent product types. Given two types A
and B, we write A X B and A — B for their product and arrow
types, which are particular non-dependent cases of the previous
ones; we also write A LI B or A + B for their coproduct. The terminal
type is noted 1 and its canonical element is noted x. Given two
terms ¢ and u of common type A, we write t =4 u (or simply ¢t = u)
for the type of identities or paths between them. Among those,
we distinguish definitional equalities which are denoted t = u. A
morphism f : A — B is called an equivalence when it has both
a left and a right inverse, we write isEquiv(f) for the predicate
indicating that f is an equivalence and we write A ~ B for the type
of equivalences between A and B. The univalence axiom states that
the canonical map (A = B) — (A =~ B) is an equivalence for every
types A and B.

A type A is contractible (resp. a proposition, resp. a set) when it is
equivalent to 1 (resp. every identity type is contractible, resp. every
identity type is a proposition). We write Prop (resp. Set) for the type
of propositions (resp. sets). One can more generally define a notion
of n-type so that previous types correspond to the cases where n is
—2, —1 and 0. We write ||—||, for the n-truncation operation, which
formally turns a type into an n-type.

3.2 Informal semantics

In order to fix ideas, we provide here informally the intended se-
mantics of our type theory in ®-spaces, a detailed presentation
being given in Section B. This is a particular case of Shulman’s
general construction of a model of univalent type theory in spatial
presheaves over any elegant Reedy category [56]. This interpreta-
tion can be thought of as a generalization of the traditional presheaf
semantics [29, Section 4], replacing presheaves (enriched in sets)
by spatial presheaves (enriched in space). Indeed, presheafs over a
fixed category is canonically equipped with a structure of category
with families, which allows interpreting intuitionistic type theory,
in a way that supports all expected constructions on types.

In our intended interpretation, a context I is interpreted as a
presheaf [T] € Psh(®). In particular, the empty context is inter-
preted as the terminal presheaf. A type in the empty context is
also interpreted as such a presheaf and, more generally, a type A
in a context T is interpreted as a fibration [A]] — [T]. A term ¢t of



type A in a context I' consists of a section [[t] of the previous fibra-
tion. The interpretation of the universe U (in the empty context) is
the presheaf in Psh(0©) sending a pasting scheme P to the space of
(appropriately small) fibrations over JP.

3.3 Spatial type theory

The presheaf semantics supports other important operations, which
are not reflected (yet) in the syntax. The inclusion 1 — 0, sending
the object of 1 to the pasting scheme [] (which is the object of
objects) induces, by precomposition, a functor r : Psh(®) — Psh(1)
restricting a cellular space to its space of objects (the co-category
Psh(1) is canonically isomorphic to S). This functor admits a left
adjoint b, sending a space X to the constant presheaf equal to X.

b
s~ 1 psh(®)
S
r\r_/

These functors induce a comonad b on Psh(®) which will allow us
to consider spaces (as opposed to cellular spaces), by embedding
them into cellular spaces. For instance, for an arbitrary cellular
space, we want to be able to have access to the space of cells of a
given shape (which is not a cellular space in an interesting way).

The modality b being comonadic, it cannot be expressed directly.
This motivated the introduction of spatial type theory [57], which
axiomatizes this modality: any type A induces a type bA. In order
to do so, we have to consider contexts containing two kinds of
variables: the crisp ones and the usual (or cohesives) ones. The crisp
variables are more constrained, in the sense that they can only be
substituted by terms of modal type (and their type can only depend
on crisp variables). We write A | T for a context where the variables
in A are the crisp ones. The associated inference rules for b are

Al-+A:Type Al-Ft:A
A|T +bA A|TF{:bA

A|T,x:bA+ B:Type
AITrt:bA  Ay=A|TFu:Bly/x]

A|Tl—letyb:tinu:B[t/x]

as well as the expected fS-reduction rule. We write x :: A to indicate
that x is supposed to be of type A in the crisp part of the context.
The two first rules ensure that modal terms or variables can only
depend on the crisp part of the context, and the last one is such
that a crisp variable can only be substituted by a modal term. Given
atype A = U, we write —, : bA — A for the canonical map defined
by x, = (let y” = x in y); we say that A is discrete when this map is
an equivalence. The b modality is functorial in the sense that every
function f :: A — B induces a function bf : bA — bB defined by
bfx = (let y® = x in (fy)?). In order to experiment with such a
theory a flat extension of Agda is available [61]. From now on, we
suppose that our type theory is a crisp extension of intuitionistic
theory, as indicated above.

These modalities will be particularly useful when considering
categories below. Given a type A, the type bA corresponds to re-
stricting to the objects of A, or considering the global sections. In
particular, when A is a category, this will amount to restricting to
the core of A, obtained by keeping only invertible morphisms. With

Louise Leclerc and Samuel Mimram

this point of view in mind, crisp variables can only depend on types
which behave like groupoids, for which we do not have to handle
variance issues (see Section 5 for further discussion on this point).

3.4 Wild categories

In type theory, the structure resulting from the direct translation
of the notion of category is called a wild category [15]: it consists
of a type O :: U of morphisms, a family of types of morphisms
M :: OXO — U, compositions and identities, which are associative
and unital. This notion is “wrong” in the sense that we lack the
higher coherences, but still useful in the sense that it approximates
the right notion of co-category (which is expected to require an
infinite amount of coherence datum and thus be difficult to for-
mulate). Note that, in the context of spatial type theory, all the
data comprised in wild categories is always assumed to be crisp.
Similarly, the direct translation of the traditional notion of functor
is called a wild functor and the corresponding notion of adjunction
between two functors is called a wild adjunction. We should recall
that some of the expected properties for those do not go through
without additional hypothesis. In particular, wild left adjoints do
not preserve colimits in general unless we suppose that they satisfy
an additional 2-coherence property [49]. Moreover, all the adjunc-
tions considered here will be crisp adjunctions, see [57], by which
we mean that we have functors L :: A — BandR :: B — A together
with isomorphisms b(L a — b) =~ b(a — Rb) natural in a and b.

3.5 Pasting schemes

As a last important construction built in in our type theory, we
suppose that we have types encoding the category ©, which we
explained how to handle algorithmically in Section 2. In more de-
tails, this means the following. We first suppose given a type PS of
pasting schemes. If our type theory features inductive types, we
can define PS as an inductive type with one constructor of type
ListPS — PS, i.e. a pasting scheme is a list of pasting schemes.
Otherwise, the type PS can be directly axiomatized as a new type
with the expected associated rules:

A|TFL:List PS
A|T+[L]:PS
A|T,x:PSFA:Type
AIT,L:ListPS+t:A[[L]/x] A|T+P:PS
A|Trlet [L] =Pint:A[P/x]
A|T,x:PSF+A:Type
AIT,L:ListPS+t:A[[L]/x]  A|T+L:ListPS
A|TF (let [L] = [L] int) = ¢ : A[[L]/x]

We also suppose that for every pasting schemes P Q : PS, we have a
type P —ps Q which corresponds to the hom type in ® between P
and Q: again, from the description of Definition 1, this can be
axiomatized as an inductive type (or directly as a built-in type),
see [35] for a formalization.

A|T + PS

PosSTULATE 1 (PASTING SCHEMES). We have a type PS of pasting
schemes as well as types P —ps Q for PQ : PS.

By induction, we define functions id : (P : PS) — (P —ps P) and
—o—:(PQR:PS) = (Q —ps R) = (P —ps Q) — (P —ps R)
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which respectively compute identities and composition of mor-
phisms in O, so that they from a category in the sense of homotopy
type theory in [59, Definition 9.1.1].

PROPOSITION 7. The above data forms a category © with PS as set
of objects, —ps as sets of morphisms, and id and o as identities and
composition.

Proor. Given P Q : PS, the definition of the type P —ps Q as an
inductive type implies that it has decidable equality and is thus a
set by Hedberg’s theorem [59, Theorem 7.2.5]. The fact that com-
position is associative and unital can be shown by induction (this
follows from the fact that we have a category by Definition 1). By
similar arguments as above, one can show that the type PS is a
set and that the type of automorphisms of a pasting scheme is
contractible (because © is a Reedy category [9]), from which fol-
lows that this is indeed a (univalent) category, in the sense that
it is complete, i.e. the canonical map from identities of objects to
isomorphisms is an equivalence. O

3.6 Yoneda embedding

Since all our types are to be interpreted as cellular sets, and we
now have access to the category ©, it is natural to axiomatize the
Yoneda embedding as a functor & : © — U. There is a subtlety
here, due to the fact that U actually behaves as an co-category, so
that & should be axiomatized as an co-functor, which is currently
out of reach. However, it turns out to be sufficient in practice for
our purposes to axiomatize it as a wild functor.

PoSTULATE 2 (YONEDA EMBEDDING). We suppose that we have a fully
faithful wild functor ® — U consisting of

(A) atype &P : U for every pasting scheme P : PS,

(B) a function X f : XP — XQ forevery f: P —ps Q,

(C) an equality X idp =id y p for every P : PS,

(D) an equality Xgo Xf = X(go f) for every composable

morphisms f : P —ps Q and g : Q —ps R,
(E) a proof that the mapb X : b(P —ps Q) — b(KP — XQ)

is an equivalence for P Q :: PS.

A type of the form JP for some pasting scheme P is said to be
representable.
Given a crisp type A :: U and a pasting scheme P : PS, the

type Ap of P-cells of A is
Ap = b(kP—-A)

Note that this type is only expected to be a space, as opposed to a
general cellular space: this can be formulated here thanks to the b
modality. We simply write A, for Ag,. Note that (E) states that the
space of P-cells of & Q is precisely the space of maps P —ps Q,
ie. (XQ)p = (P —ps Q). A consequence of the subsequent Postu-
late 6 is that the Yoneda functor preserves the terminal type:

LEMMA 8. We have &[] = 1.

Proor. Given a pasting scheme P, we have
(&[Dp=b(XP— X[D by definition of (=)p
=b(P —ps []) by (E) of Postulate 2
=bh1 by property of ©

=b(kP -] because [] is terminal
=1p by definition of (—)p
By Postulate 6, we thus deduce that X [] is equivalent to 1. O

We thus have that bA is the type of 0-cells of A as expected:
COROLLARY 9. For any crisp type A, we have Ay = bA.

Taking cells in a crisp type A is functorial in the sense that a map
f+ P —ps Q induces amap Ag : Ag — Ap (also sometimes noted
f":Ap = Qp),andamap f :: A — Binducesamap fp : Ap — Ap
(those are respectively given by pre- and post-composition). In
particular, we have source and target maps Ay : Ap — Agp and
Aggt : Ap — Agp, that we simply respectively write src and tgt in
the following. We say that two P-cells are parallel when they have
the same source and the same target (by convention, two 0-cells
are always parallel).

3.7 Cellular cohesion

Now that we have introduced a type of pasting schemes along
with the corresponding Yoneda embedding, we can formulate a
new axiom which ensures that the b modality actually behaves
as explained in Section 3.3, by discarding all spaces in a presheaf,
excepting the one corresponding to objects.

Given a type A and a pasting scheme P, we have a canoni-
cal map A — (XP — A) sending an element x : A to the
constant function; this map can also be understood as the map
Ktp: A~ (K[] > A - (kP — A) wheretp : P — []is
the terminal map in ©. We say that A is cellularly discrete when
this map is an equivalence for every P : PS. Such a type is thus
local with respect to all representable types, in the sense of [53].
Recall from Section 3.3 that we have another notion of discreteness,
which we call being b-discrete here: a type A is discrete in this sense
when the canonical map bA — A is an equivalence. Following the
cohesion axiom of [57, Axiom CO0], we postulate that both notions
of discreteness coincide:

PosTULATE 3 (CELLULAR COHESION). For any type A = U, A is
cellularly discrete if and only if it is b-discrete, and we simply say
discrete for both.

ProrosiTION 10. The types PS as well as P —ps Q for pasting
schemes P and Q are discrete.

Proor. We have seen in the proof of Proposition 7 that both types
have decidable equality and are thus discrete by [57, Lemma 8.15].
In order to apply this lemma, we need to make sure that Axiom C1
of [57] is satisfied, which follows immediately from Postulate 3 and
the fact that representable types are inhabited. The excluded middle
is also listed as a requirement, but is not actually necessary for the
direction of the implication we are using. O

As a consequence of the previous result, there is essentially no
difference between PS and b PS, thanks to which we will not need
to be precise about whether the variables for pasting schemes are
crisp or not. This also sheds light on the fact that the type PS does
not correspond to the category ©: although it is actually a category
(by Proposition 10 and Theorem 19), its internal morphisms are
trivial and thus not the morphisms of pasting schemes.



3.8 Suspension and hom types

We write U, = (X : U).(X x X) for the type of bipointed
types. Equivalently, a bipointed type is a type X equipped with
two maps left, right : 1 — X. Given a pasting scheme P, the
type &P is canonically bipointed when equipped with the mor-
phisms X left, & right : &[] — &P, whose source can be con-
sidered to be 1 by Lemma 8. Given two bipointed types A and B,
we write A —_ B for the type of bipointed maps between A and B,
i.e. maps preserving the two distinguished elements.

We now want to axiomatize the existence of a suspension opera-
tion on types which can be thought of as a left adjoint S : U — U,
to the hom-type functor from the co-category U, to the co-cate-
gory U which will be considered later. This operation should corre-
spond to the one already defined for pasting schemes. Moreover, the
characterization of hom-spaces toward suspensions in Proposition 4
suggests the following axiomatization:

POSTULATE 4 (SUSPENSION). We suppose that we have a crisp wild
functorS :: U — U_, and, for every P : PS withP = [Py,...,P,],
an interwining map fp :: &SP —_ S&P which is an equivalence
and such that the canonically induced map 1 + £;Xp, + 1 — (SX)p
is an equivalence. We moreover suppose that S preserves pushouts.

Above, the canonical map f : 1+ %;Xp, + 1 — (SX)p sends the
element of the left (resp. right) copy of 1 to the left (resp. right)
canonical point of SX (which is bipointed), and the image of a cell
a : Xp, in the middle summand is b(S(-) o fip, o & ;) (a), i.e. the
composite

- S,
P 27y ysp, Py sxp S0 sxp

up to flattening. One of our main motivations for introducing sus-
pension is to be able to define the hom of a type as a right adjoint:

PosTuLATE 5 (HoM). There is a crisp wild right adjoint to the sus-
pension functor noted hom :: U, — U. The image of (A, x,y) is
denoted homy (x, y).

As expected, the 0-cells of homy (x,y) correspond to 1-cells in A
from x to y.

LEmMA 11. For A :: U and x, y :: A, we have
b(homu(x,y)) = Z(a:A;).(src(a) =x) x (tgt(a) = y)

We sometimes write x — 4 y instead of b homg (x, y). Further pos-
tulates are introduced in Section 4.2, after we define categories in
order to motivate them.

4 Higher categories

We now identify, among types, those which should reasonably
be considered as higher categories. Since types are interpreted as
cellular-spaces, it is natural to introduce two conditions ensuring
that they behave as higher categories, following the definition of
©-spaces [50, 51], namely a Segal condition and a completeness con-
dition. This approach is very similar in spirit to the one adopted in
simplicial type theory [52] where “Rezk types” are defined as those
being both Segal and complete. However, we need to formulate the
Segal condition for pasting schemes instead of simplices, which can
be done as follows, based on the definition in [39, Section 4.2.1.6].
Given a pasting scheme P, the type X P is expected to be a category
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(we will see that this is indeed the case in Theorem 30) and thus
be closed under compositions. There is another type that we can
associate to the type P, its realization, noted (P) and defined as
the colimit of representables associated to the generators in P. The
type (P) is similar to &P excepting that some compositions are
not present. For instance, ([2]) corresponds to a simplicial 2-horn
whereas J[2] corresponds to a 2-simplex:

([2]) = /\ k2] =

Given a pasting scheme P, we will have a canonical inclusion
(P) — X P and the Segal types will be defined as those having the
right lifting property with respect to these maps.

4.1 Definition of higher categories

We begin by defining the realization of a pasting scheme as well as
the canonical map to the corresponding representable type.

Definition 12. Given a pasting scheme P = [Py, ..., P,], we write (P)
for its cellular realization, defined as the colimit of the diagram

1 1 1
Y‘ght lfy x‘%ht 1f.fr/ \rﬂfht l)ey 3)

S(P;) S(P2) S{(Pp)

Definition 13. Given a pasting scheme P, we define the canonical
map canp : (P) — X P from the realization of P to the correspond-
ing representable type, by induction on P. Given pasting scheme
P =[Py,...,P,] and an index i, we can define a map S(P;) — XP
as the composite

Scanp; - <
S(P;) > SEP; > kSP; ———— kP

The collection of these morphisms forms a cocone for the dia-
gram (3) defining the cellular realization, thus inducing the desired
map canp : (P) — X P by universal property of the colimit.

In the case of the empty pasting scheme [], we have that both ([])
and X [] are isomorphic to 1 (see Lemma 8), and we can consider
that cany] is identity on 1 without loss of generality. Similarly, for a
pasting scheme of the form [P], we can take can|p) to be fipoS canp.

We can now define the property of being Segal as a right lifting
property.

Definition 14. A type A :: U is Segal when for every pasting scheme
P : PS, the map

b(XP — A) — b((P) — A)
induced by precomposition with canp is an equivalence.

Suppose fixed a Segal type A :: U.Given P : PS, an element a : Ap is
called a P-cell, and its source and target are respectively the dP-cells
Agc(a) and Aggi (a), which we simply write as src(a) and tgt(a).
Given n € N, an O,-cell is simply called an n-cell.

We can define all the expected composition operations in a Segal
type A. The terminal map 7 : O; —ps Oy induces, for any n, by sus-
pension, amap S"7 : Op; —ps O, and thusamapid, : A, — A1
sending an n-cell of A to its identity. Similarly, given i < n, consider
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the pasting scheme P = [O,_;_1,0,-;_1]. Since suspension pre-
serves pushouts, the realization (S'P) is the pushout of the diagram
tgt SI¢

0, <~ 0; — 0,, and a map b({S'P) — A) thus corresponds to a
pair of i-composable n-cells in A. By the Segal property, such a map
extends to a map b( LXS'P — A) and thus induces an n-cell in A
by precomposition with the i-th suspension of the map O,,_; — P
defined by (j +— 2, (ido,_,_,);), i.e.

0 On-i-1 51
Idpnfifl 1dpnfifl
v v
0 > 1 > 2
On-i-1 4 On-i-1 ’

We have thus defined a map — *; — : A, X4, A, — A, which
corresponds to the composition of n-cells in codimension i. We
simply write a = b for the composition of n-cells a and b in codimen-
sion n — 1. Those operations have the expected source and target
maps, e.g. for n-cells a and b, we have src(id, (a)) = tgt(id,(a)) = a,
src(a = b) = src(a), tgt(a = b) = tgt(d), and so on. In particular, the
composition operation induces a map

(x=ay) = (y—a2) = (x 242

still written —  — for arbitrary parallel (n—1)-cells x, y, z.
Given atype A :: U and acell a : x —4 y, we say that a is
invertible when the following type is inhabited:

islnv(a) = (2(b : y—ax).ax b =idy) X (2(b : y—ax).b * a = idy)

We write a ~4 b for the type of invertible maps in a —4 b,
and A}, = X(a b : Ay).(a =a b) for the type of all invertible
(n+1)-cells in A.

Definition 15. A type A :: U is complete when the canonical maps
(x =4, y) = (x =4, y) are equivalences for every dimension n
and parallel n-cells a, b :: A,.

The above property can be rephrased as the fact that the canonical
map A, — A}, is an equivalence for every dimension n. Inter-
estingly, the type of invertible maps can be represented as follows.
Given n € N, we write E,,;; for the pushout

xsm U ksri[1] e E s

J:S"tu;s"t\l/ l

£S"[1] U £S8"[1] —————— Ennt

where t : [1] — [0] is the terminal map, the maps «, § : [1] — [3]
are given by «(0) = 1, (1) = 2, §(0) = 1 and (1) = 3, i.e.

[1] e e (1]

|

S -
Bl === e A i SRR K]

and the above map [ £S"a, &S"f] denotes the universal map in-
duced by the coproduct from the two maps kS"« and XS"S.
This object represents equivalences in the sense that we have
A%, =b(Eps1 — A), see for instance [50, Proposition 10.1]. Since
(=) — A sends pushouts to pullbacks, we have that A}, is the
pullback A% x "y Agn(3]. We thus have the following useful refor-

mulation of completeness:

LEMMA 16. A type A :: U is complete when the following square is
cartesian for everyn : N:

2 (Aan:A/}n>
Ap € Asnp

id, x idnT TAsnt

A2 LA
%
n (id,id ) n
i.e. when the canonical map b( & O, — A) — b(Ep4; — A) isan
equivalence for all n.

Definition 17. A complete Segal type is called an (oo, w)-category.
We write Cate, (, for their type.

4.2 Further postulates

Having defined categories, we show here general results about them.
Namely, that all discrete types are categories (Section 4.3), that the
hom of a category is still a category (Section 4.5), that representable
types are categories (Section 4.6) and that categories are stable
under finite limits and sums (Section 4.7). In order to be able to do
so, we first need to introduce three more postulates, which enable
one to effectively construct equivalences and manipulate types
through representable types.

Since our types are to be interpreted as presheaves over ©, we
expect that they are entirely determined by their spaces of P-cells
if we consider all pasting schemes P. We axiomatize this by the
following postulate which will be very useful in order to build
equivalences in practice, by defining them pointwise.

POSTULATE 6. A map f :: A — B is an equivalence if and only if all
the maps fp : Ap — Bp are equivalences for P : PS.

In a category, an object A is connected when Hom(A, —) pre-
serves finite coproducts [16]. For instance, the terminal set is the
only connected object in the category of sets; in the category of
topological spaces, connected spaces are those which are non-empty
and connected in the usual sense. In the category of cellular spaces,
all the representable objects are connected: the following postulate
precisely asserts this. Another point of view on this is that colimits
are computed pointwise in presheaf categories (such as cellular
sets) [42, Corollary 5.1.2.3]: here, we only postulate that coproducts
are pointwise.

PosTULATE 7. For any P : PS, the functor (—)p : bU — bU pre-
serves coproducts.

Note that the previous discussion explains that it would have been
reasonable to suppose more generally that (—)p preserves pushouts,
or any family of small colimits. We have restricted ourselves to
coproduct here only because this is what is necessary in our appli-
cations (see Section 4.7).

The following postulate roughly enforces a weak form of the
density theorem, which states that every type is a colimit of repre-
sentable types: here, we actually only require that a type is covered
by representable ones. We recall that a map f : A — B is a surjec-
tion when for every y : B, we have that the fiber of f at y is merely
inhabited, i.e. we have || fib(y)l|-1, see [59, Definition 4.6.1].

PosTULATE 8. For any type X :: U, the canonical map
e:(Z(P:PS).3(x:Xp).&P) > X



defined by e(P, x, p) = xy, p is a surjection.

4.3 Discrete types are (oo, w)-categories

We show here that discrete types are categories. This is intuitively
expected because, by Postulate 3, a discrete type does not have
non-trivial higher cells, and the conditions for being a category
(Definition 17) are thus automatically satisfied.

LEmMA 18. IfA :: U is a discrete type, then for all a,b :: A, we have
homy(a,b) ~ (a =4 b).

Proor. By Postulate 6, it is enough to show that the canonical map
(a =4 b) — homy(a, b) is objectwise an equivalence. Given P : PS,
we have

homy(a,b)p =b(XSP —_. (A, a,b)) by Postulate 5

=2(f : Asp).(fy(left) = a) x (£, (right) = b)
by [57, Lemma 6.8]
=3(x:bA).(xp, =a) X (x, =b)
because A is discrete

=(a=4b) by [57, Propositions 6.8 and 6.19]

and we conclude. O

THEOREM 19. Any discrete type A :: U is an (oo, w)-category.

4.4 Homotopy level is determined pointwise

The goal of this section is to characterize homotopy levels in our
type theory. We namely show in Theorem 24 that a type A is an
n-type if and only if so are all the types Ap.

We begin by observing that, because all types are covered by
representable ones, in order to show that a property holds for all
the elements of a type it is enough to show that it holds for all
elements covered by a representable type.

LEmMA 20. Forany X :: U and A : X — Prop, we have
((P:PS) > (c:Xp) = (s: &P) > A(cys)) = (x: X) = A(x)

Proor. Suppose given x : X. Since we are eliminating toward a
proposition, by Postulate 8, we can assume that there is P : PS,
c:Xpands: &P such that ¢, s = x. From the first argument, we
deduce that A(x) holds. O

We can now show the following universal property for 0-truncated
crisp types: those are not only covered by representable types, but
can actually be obtained as a canonical colimit of those (in the
universe of 0-truncated types).

ProrosITION 21. For any X :: U, we can define maps u and v both
from
S(P,Q:PS).3(c: P —ps 0).2(d : Xp). &P
and to
3(P:PS).Z(c: Xp). kP

by u(P,Q,0,d,s) = (P,o"d,s) and v(P,Q,0,d,s) = (Q,d, (K o)s).
Then the canonical map ¢ of Postulate 8 is such thate oy =¢ov,
Moreover, for any Y :: Set, precomposition by ¢ yield an equivalence

p:(X>Y) > 3(f: (3(P:PS).2(c:Ap).&P) > Y).fou = fov

As a direct corollary, we deduce that equality of maps whose target
is a set can be tested objectwise.
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COROLLARY 22. For any two maps f,g :: X — Y where X :: U and
Y :: Set,

(f=9 < ((P:PS) = (c:Xp) = fp(c) =gr(c))

Note that for second part of Proposition 21 to hold, and thus also
for Corollary 22, it is crucial that Y is set-truncated. Otherwise, the
specification of the map f : X — Y would require a specification
of (non-propositional) homotopies for filling naturality squares.

A fundamental type is the one of spheres S™. By [59, eq. (6.5.2)],
it can be defined as the coequalizer S™ :; 2 — §"*1 where the two
maps S"” — 2 are the two constant maps, and with the convention
that S~ = 0.

PROPOSITION 23. For every n, the n-sphere S™ is discrete.

Proor. By [57, Theorem 6.21], discrete types contain 0, 2 and are
closed under coequalizers. O

Finally, we can deduce the main theorem in this section, which
states that truncation level for types can be tested pointwise.

THEOREM 24. Let X :: U, then for any n > —2, we have
isType, (X) < II(P : PS).isType, (Xp)

Proor. First consider the left-to-right implication and suppose that
X is an n-type. Given P : PS, we have

IXplln = (&P — X)[ln =b| XP — X,

Since X is an n-type, then so is &P — X by [59, Theorem 7.1.9],
and thus || X P — X||, = &P — X by [59, Corollary 7.3.7]. We thus
have || Xp||, = Xp, from which we deduce that Xp is n-truncated
by [59, Corollary 7.3.7] again.

Conversely, suppose that Xp is n-truncated for every P : PS.
By [59, Theorem 7.2.9], we have that X is an n-type if and only if
the canonical map (S™! — X) — X (given by precomposition
with the basepoint map 1 — $"*!) is an equivalence. By Postulate 6,
this is equivalent to the canonical maps (S**! — X)p — Xp being
an equivalence for every P : PS. Moreover, we have

(Sn+1 N X)P = b(ctp N Sn+1 N X)
=h(S"! > b( kP > X))
= b(Sn+l N XP)

which uses (in addition to permuting arguments) the fact that we
have b(B — bA) = b(B — A) when B is discrete [57, Corol-
lary 6.15], which is the case here for S"*! by Proposition 23. We
thus have that X is an n-type if and only if the canonical map
b(S"™! — Xp) — Xp is an equivalence. Since Xp is n-truncated, we
have that the canonical map (S"*! — Xp) — Xp is an equivalence
and we conclude using the fact that b preserves equivalences. O

4.5 Homs of categories

We show here that for any category, the hom-type between any two
elements is again a category. We first establish that the canonical
map between the realization of a pasting scheme and the corre-
sponding representable is compatible with suspension. Recall that,
given a pasting scheme P, the realization of SP is, by definition,
the colimit reduced to SP and is thus canonically equivalent to it.
Similarly, we have that &SP is equivalent to S & P by Postulate 4.



A cellular type theory

LEMMA 25. For any pasting scheme P : PS, there is a commutative
square

cangp

(Spy —=F 5 xgp

| b

S(Py ———> SkP

Scanp

Proor. Recall that the canonical map cang : (Q) — XQ was
introduced in Definition 13. In the particular case where Q = [P]
is the suspension of a pasting scheme P, this map is

S(P) Py gyp = 4 xSp 2Py xo

where J Cp is the identity, thus providing the commutative square,
by definition of cang. O

LEmMMA 26. IfA :: U is a Segal type and a, b :: A, then for any pasting
scheme SP, the canonical map

b(kP—. (A ab)) > b((P)—>.(Aab))

is an equivalence

Proor. The proof mainly consists in commuting b to 3-types and
identity types [57, Lemma 6.8 and Corollary 6.2], and using the
bipointedness of canp. O

LEmMMA 27. Let A :: U be a Segal Type, and a, b :: A, thenhomy (a, b)
is also Segal.

Proor. We have

b( &P — hompy(a, b))
=b(S&kP—.(4ab))
=b(XSP—_ (A ab))
=b({(SP) —. (A a D))
=b(S(P) —. (A aD))
=b((P) — homa(a, b))

by the adjunction S 4 hom
by Postulate 4
by Lemma 26
by Lemma 25
by the adjunction S 4+ hom

and we conclude. |

THEOREM 28. Let A :: U be a an (oo, w)-category and a, b :: A. Then
homy (a, b) is an (o0, w)-category.

Proor. By Lemma 27, we know that homy(a, b) is Segal, and it
remains to prove its completeness. First observe that E,.; = SE,
by our assumption that S preserves pushouts Postulate 4.
b( X O, — homa(a, b))
=b( & Ony1 — homgy(a, b)) by the adjunction S 4 hom
=b(Ens2 —>..(A a b))

= b(Ens1 —. homy(a b))
by S 4 hom and the previous observation

by completeness of A

and we conclude. |

4.6 Representable types are (oo, w)-categories

We show here that the representable types, i.e. those of the form
& P for some pasting scheme P, are categories.

PROPOSITION 29. Given P : PS, the type X P is Segal.

THEOREM 30. Given P : PS, the type X P is an (oo, w)-category.

ProOF. The type &P is Segal by Proposition 29 and we turn to
completeness. On the one hand, note thatifa,b : (& P),,thena =b
is propositional by Postulate 2 and Proposition 7. On the other hand,
using Lemma 3, we have that if there is an equivalence a =~y p b,
then a = b and this equivalence is unique. We have therefore proved
that a = b and a ~ b are equivalent propositions, which gives the
result. O

In the above proof, we have actually achieved a bit more than the
theorem: we have shown that &P is skeletal. We have also proved
that 1 ~ X[] is an (oo, w)-category (which also follows from 1
being discrete, see Theorem 19).

4.7 Stability under sums and finite limits

We show here that categories are stable under finite limits and
finite sums. Since we already know that the initial and terminal
type are categories (by Theorem 19, for instance) all we have to
show is stability under pullbacks and coproducts. We begin by
characterizing the cells in those types before showing stability
under pullbacks.

LEMMA 31. Consider categories A,B,C :: U be (oo, w)-categories
together with a pasting scheme P : PS. For any two maps f :: B — A
and g :: C — A, writing B X4 C for their pullback, we have
(BXaC)p = Bpxa,Cp
Similarly, given two types B, C :: U, we have
(B + C)p = Bp+Cp
LEmMA 32. We have the following characterisation of invertible cells
in pullbacks and sums:
— for any A,B,C :: U Segal-types, crisp maps [ :: B — A,
g:C—Aandn:N,
(BXa C):ﬂ = B;+1 XAz, Cr:z+1
— forany B,C :: U Segal-types and n : N,
(B+Chpy1 = By +Ciy

PROPOSITION 33. Let A, B,C :: U be three (co, w)-categories with
two crisp maps f :: B — A and g :: C — A. Then their pullback
B x4 C is again an (oo, w)-category.

Proor. We first show that B X4 C is Segal. Given P : PS, we have
b((P) = B x4 C) = b(({P) = B) X(py—5 ((P) = C))
by universal property

=b((P) = B) Xp((py—p) D({P) = C)
by [57, Theorem 6.10]

by Segalness of A, B and C
by Lemma 31

~ Bp XAp Cp
= (Bx4C)p



For completeness, given n : N, we have:
(B XA C)n = (Bn ><A,, Cn)n

= (Byy1 Xaz,, Cyp1)n by completeness of A, Band C

=~ (BX4 C)§+1

by Lemma 31

by Lemma 32

and we conclude. O

In order to show stability under coproducts, we first show that
realizations of pasting schemes are connected.

LEMMA 34. Given P : PS and X, Y :: U, (P) is connected, in the sense
that any crisp map f : (P) — X + Y factors through X orY.

Proor. We show the stronger property that S”(P) is connected for
anyn:NandP = [Py,..., Px], by induction on P. Since suspension
preserves pushouts by Postulate 4, we have

S™(Py =S"™(P) Uy, .- Uy, S (Pk)

By Postulate 7 the & O,, are connected, and by induction hypothesis
the S"*1(P;) are connected, and we conclude using the fact that
connected objects are stable under pushout along an inhabited

type. O

PROPOSITION 35. Given two (oo, w)-categories A, B :: U, their co-
product A + B is again an (oo, w)-category.

We do not expect that (oo, w)-categories are closed under pushouts
of types, because it would requires to have composites for cells
glued next to one another in the pushout: an example of a non-
Segal pushout of categories is the horn ([2]), where the composite
of the two 1-cells is missing.

5 Conclusion and perspectives

We have defined a type theory in which cellular spaces and ®-spaces
can be manipulated in a synthetic way, and have illustrated its
usefulness by showing various properties of categories. It would
be interesting to have an implementation in order to concretely
experiment with this type theory, but there are various possible
extensions and variations on this work that we would like to explore
before embarking into implementation.

One of the main features of our type theory is the ability to
speak about a higher category of presheaves over the category ©.
It seems that a large part of the work done here does not actually
depend on O (developements depending on Postulates 2, 3 and 6 to 8)
and would generalize to presheaves over any category satisfying
suitable conditions. It would be interesting to investigate those
conditions and explore the definition of type theories admitting
semantics in arbitrary presheaf categories. In particular, this would
enable one to approach synthetically other models of co-categories
or higher algebraic structures (such as I'-spaces).

Although our approach so far has allowed us to define basic
constructions in higher category theory, it crucially lacks functo-
riality properties. In homotopy type theory, such properties fol-
low for free from the univalence axiom which ensures that ev-
ery construction is homotopy invariant. For instance, the type of
identities x =4 y between two elements of A is functorial in x
and y, thanks to the transport along other paths of A: any pair of
paths p : x’ =4 x and q : y =4 y’ induces, by transport, a map
x =4 y — x’ =4 y’, which corresponds to the composition of
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paths. In our directed setting, we expect that we could similarly
associate to every 1-cells p : homyu(x’,x) and ¢ : homa(y,y’) a
map homy (x,y) — homyu (x’,y’), and more generally that we can
see homy as a map of type A°? X A — U. This does not seem to be
possible with our current definition of homy, because it requires
the variables x and y to be crisp, thus restricting them to groupoids.

To solve this issue and related ones, it would be interesting to
formally introduce a type X — Y corresponding to the category
of functors and oplax natural transformations. Its usefulness can
be explained as follows. Writing I = J<[1] for the formal arrow,
the type I — A is not the correct space of 1-cells in A (it only
has the right core) because it does not capture the higher cells.
However, the type I — A should be much better behaved, and
should enable us to define correct notion of hom-type or slices. It
would also be interesting to axiomatize the left adjoint to this arrow
type, which should correspond to the Crans-Gray tensor product
of categories [39, Section 4.3], noted ®. This tensor product can
be thought of as a variant of the cartesian product where various
squares are filled with directed arrows instead of isomorphisms, so
that it is also better behaved with respect to higher cells. We expect
that the suspension SA can be recovered as a suitable quotient
of I ® A, and that the notion of (co)cartesian fibrations could be
defined using it, thus paving the way toward a formalization of the
(o0, w)-categorical Yoneda lemma.

In order to extend our type theory with new type formers such as
the tensor product and its right adjoints, we need to account for the
presence of two different tensor products (the Crans-Gray tensor
product ® and the cartesian tensor product X), whose presence
should be reflected in the structure of contexts, which shall now
have two distinct kinds of “commas” corresponding to the two prod-
ucts. This suggests investigating a variant of our type theory based
on bunched logic [48, 54, 55], whose aim is precisely to take this
kind of situation into account. The most subtle part here consists
in correctly handling the interaction between bunched logic and
dependent types, which is made simpler in our case because depen-
dencies in ®-types is not needed. Another peculiarity of our setting
is that ® is non-symmetric and semi-cartesian (thus allowing for
weakening).
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A Onmitted proofs

ProoF oF LEMMA 3. We write P = [Py, -+, Pp,| and proceed by
induction on the dimension n. If n = 0, the cell a induces inequality
(aosrc) < (aotgt) as elements of [m]. Similarly (bosrc) < (botgt)
and we deduce the result. Now, consider the inductive case, with
n > 0. We may write a = (f, (0i)ier) and b = (g, () jey). First, note
that f(0) = ¢g(0) and f(1) = g(1) because src : O, — Op41 pre-
serves endpoints (because n > 0). We deduce thatI = Jand f =g.
Then, for each i € I, we have o; o src = (a o src); (because n > 0),
and similarly, we have 7; o tgt = (b o tgt);, so that o; o src = 7; o tgt.
Exchanging the roles of o; and 7; above also yields 7; o src = o; o tgt.
Hence, by induction hypothesis, we have o; o src = ¢; o tgt and
o = 7. In particular, we already have a = b. Finally, using the defini-
tion of src and tgt again, we have (a o src); = (a o tgt); for each i,
whence a o src = a o tgt. O

ProoF oF ProprosITION 4. The suspension of a pasting scheme pro-
duces a pasting scheme which is canonically bipointed so that
suspension extends as an operation S : ® — ©_. Moreover, the
Yoneda embedding & : ® — Psh® canonically extends as a
map X : ©, — (Psh®)_(a pasting scheme is bipointed when
equipped with two maps I,r : [] — P, and those are sent to maps
&I, kr:1= X[] — XP by the Yoneda functor, making its image
bipointed). We thus have a composite functor

@30, 23 (Psho).

Moreover, the target category (Psh ©) _ is canonically isomorphic
to the category [®, S..] of presheaves enriched in bipointed spaces.
By left Kan extension, it induces a functor

Lany (& 0S) :Psh® — (Psh®)

and, by the usual formulas in enriched categories [34], the image
of a presheaf X € Psh© can be computed as the following coend
in (Psh©) :

Qe
Lan, (X oS)(X) = / Xo - £SQ

Namely, the category (Psh®)_ = [©,8.] is copowered over S,
where the copower of A : S and X € (Psh ©) _is the presheaf (A-X)
in (Psh®) _ such that, for P € ©, the space (A - X)p obtained from
A X Xp by quotienting both subspaces A X {I} and A X {r} to a
point (in particular, when A is the interval, this is precisely the
topological suspension of Xp). We write —,, : S — S, for the left
adjoint to the forgetful functor, associating to a space A the free
bipointed space 1 + A + 1. This functor preserves colimits (as a left
adjoint). We can then compute:

(SX)p = (Lan . (& 0S))(X)p by definition
Q€6
:/ XQ . J:SQP (A)

by the Yoneda lemma

Qe®
= / Xo - ©(P,SQ)

Q€6
= / Xo - 2:0(P1,0),, (B)
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QeB
=35 f X - O(P,Q),,

sums commute with coends

Q€06
_ 3 ( [ xo-e, Q))

S.
= Zi XPi++

= (Z;gXpi) —++ preserves coproducts as a left adjoint
++

—,+ preserves colimits
++

by the codensity formula

=1+ ZESXP,- +1 by definition of —,,

Above, (A) is computed in S.,, which is justified by the isomor-
phism (Psh®) = [©,S.] and the fact that coends are computed
pointwise. For (B), by combinatorics on ©, we have an isomorphism
of spaces

O(P,SQ) =1+ 2,0(P,Q) +1=3,0(P;,0Q),,

and we conclude. O

ProOF OF COROLLARY 9. By Lemma 8, we have
Ap=b(X[] > A) =b(1 > A)=DbA O
Proor oF LEMMA 11. We have
b(homa(x, y)) = b(1 — homa(x,y))
=b(S1—>. (A xy)) by Postulate 5
=b(2(a: Ap).(src(a) =x) X (tgt(a) =y))
by definition of bipointed maps
= %(a: Ap).(ste(a) = %)  (tgt(a) = y)
The last line is due to the fact that A, is discrete and discrete types

are closed under products [57, Lemma 8.4] and identity types [57,
Lemma 8.5]. O

PrOOF OF THEOREM 19. Let us first show that A is Segal (Defini-
tion 14). Since A is (cellularly) discrete, this amounts to show that
the constant map bA — b({P) — A) is an equivalence. We reason
by induction on the pasting scheme P = [Py, - - -, P,]. Note that for
any index i, we have
b(S(P;) — A)
=b(2(a,b: A).{(P;) = homy(a,b))
=3(ab:bA).let u’, 0" = a, b in b((P;) = homa(u,v))
because b preserves 2-types [57, Lemma 6.8]
=3(ab:bA)letu’,o® =a binb((P;) = u=0)
by Lemma 18

by Postulate 5

=b(=E(a,b:A).a=b)
by induction hypothesis and [57, Lemma 6.8]

=bA by contractibility of singletons [59, Section 3.11]

Using the universal property of (P), a map b({P) — A) is equiva-
lently a cocone

1 1 1 1 1
1e&\‘ ;/ight ha}\ )/ight 1% )/ight
S(P;) S(P,) S{Pn)
\\\\\ P \\\fz fn/,
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where, by the above, each f; amounts to taking a point g; in A,
and the commutation of the squares to equalities a; = a;41, from
which we see that this data is contractible, and thus amounts to
a point in A. This first part proves that any crisp discrete type A
is a Segal one. Finally, we show that A is complete (Definition 15).
By discreteness of A, for all n € N, we have A, =~ A, so that the
square of Lemma 16 is a pullback. O

Proor oF ProposITION 21. For the first assertion, it follows di-
rectly from the fact that we have (¢*d), s = (d, o & o) s, for any
P,Q, 0,d,s of expected type. We now prove the second assertion.
First, we show that the fiber of ¢ is a proposition. Given a map

f:(S(P:PS).3(c: Ap). kP) > Y

with two preimages f™ and f¥ : X — Y under ¢, we want to
show that fT = f*. By function extensionality, this amounts to
show II(x : X).fT(x) = f¥(x). Since Y is a set, identity types are
propositions, and by Lemma 20, we may show instead:

II(R : PS).TI(c : Xg) II(s : XR).fT(c,s) = fF(cys)

This holds because, by assumption, both handsides of the equality
are identical to f(R, ¢, s). We have shown that the fibers of ¢ are
propositions, it remains to show that they are inhabited. In order
for a factorization f7 : X — Y of f to be well-defined, we only
have to show that f(P,c,s) = f(Q,d, t) whenever ¢,s = d,t. That
isI(v : V).®(v) where V is
2(P,Q :PS).3(c: Xp).2(d: Xp).Z(s: &P).EZ(t: £Q).cps

and is thus equal to d, t, and

®(P,Q,c,d,s,t) = (f(P,c,s) = f(Q,d, 1))
We have that @ is a proposition because Y is a set, so we may apply
Lemma 20 once again. We thus have to prove ®(myi) for some
m:b(&kR — V)andi: XR.Using the discreteness of PS, the idem-
potence of b and the fully-faithfulness of &, we reformulate the goal
as the fact that we have f(P,c, (&s)(i)) = f(Q.d, (Xt)(i)) when-
ever s*c = t*d for every R, P,Q : PS,c: Xp,d : Xp,s : R —ps P and
t: R —ps P. But then, both handsides of the equality in the target
are equal to f(R, s*c, i), whence the result. O

PRrOOF OF ProPOSITION 29. By induction on P : PS, we show the
following more general property: for every natural number n and
pasting scheme Q, we have b(S"(P) — X Q) ~b(XkS"P — KXQ).
Suppose given a pasting scheme P = [Py, -, P,] such that the
property holds for every P;. We have

b(S"(P) —ps £Q)
b( .. Ugnq Sn+1<Pi> gy ... —> J:Q)
because S preserves pushouts
=... Xb(S"lHJ:Q) b(S"“ <P,> d JiQ) Xb(S"l—»J:Q) s
by universal property of pushouts
= Xb(ckon—HkQ) b(&sn-‘—lpi - J:Q) Xb(ckon%J:Q)
by induction hypothesis

... Xb(OnHQ) b(S"“P,- - Q) Xb(OnHQ) .
because J is faithful

=b(XS"P —ps £Q) byLemma 6 and X full and faithful

Specializing to the case n = 0 yields the desired isomorphism. O

ProoF oF LEMMA 31. Let us show the property for pullbacks. We
have

b(kP — BxaC)

=b((&P — B) X, p_p (&P — C)) by universal property

=b(&P — B) Xy(xp_p) P(&P — C) by [57, Theorem 6.10]

The property for sums is precisely Postulate 7. O

Proor oF LEMMA 32. The property for pullbacks can be shown as
follows:

(BxXa Oy = b(Enss = B C)

= b((En-H - B) ><E,.H.1~>A (En+1 s C))
by universal property

by Lemma 16

= b(En+1 - B) Xb(Eps1—A) b(En+1 - C)
by [57, Theorem 6.10]

=B, 1 Xaz, Cpin

n+1
For sums, according to Lemma 31, an n-cell f of A + B is either
a n-cell of A or a n-cell of B. Then the data of a left (resp. right)
inverse of f in A + B will factor through the same component as f.
Hence f will be invertible if and only if it is as a cell of A or as a
cell of B. O

PRroOOF OF PROPOSITION 35. Let us first show that A + B is Segal.
Given P : PS, we have
b((P) —» A+ B)
=b(((P) = A) + ((P) — B))
=b((P) — A) +b((P) — B)

by Lemma 34
by [57, Theorem 6.21]

=Ap+ Bp by Segalness of A, B
=(A+B)p by Lemma 31

For completeness, given n : N, we have
(A+B), = (A, +B,) by Lemma 31

= (AZ+1 + BZ+1)
=(A+B);

n+1

by completeness of A, B
by Lemma 32

and we conclude. m]

B Semantics of CellTT

In this appendix, we present the semantics of the type theory we
have introduced, thus providing motivation for its axioms and their
soundness.

B.1 Cellular spaces

We consider a model in simplicial presheaves over ©, equipped with
the Reedy model structure [28, Chapter 15], relative to the Quillen
model structure on A, which coincides with the injective model
structure [9]. We write sPsh(®) for this model category. We write ~
for the equivalence relation generated weak equivalences (i.e. exis-
tence of a zig-zag of weak equivalences) and = for isomorphism.
We write £ : © — © < sPsh(©) for the Yoneda embedding
and recall the most useful already known properties of this model
structure, which may be found in [9, 28, 41, 50, 56].

Any object of sPsh(®) is cofibrant, and cofibrations are the
monomorphisms, see [50, Section 2.6] and [9, Proposition 3.15].



An object of sPsh(0) is discrete when it is set valued: any such
object is fibrant [50, Section 2.6]. As in any Reedy category, a
map f : A — B in sPsh(®) is a fibration if and only if, for each
P € Ob(®), the induced map Ap — Bp X, MpA is a Kan fibra-
tion, where MpX = limep)op(X|(o|P)op) is the matching object
of X [28, Definition 15.3.3]. Any two objects X, Y of sPsh(®) have
a mapping space Map(X,Y) € A and an internal Hom denoted
Hom(X,Y) in sPsh(®). Moreover, Map( £ PxX,Y) = Hom(X, Y)p
for any P € ©, and Map(X,Y) = Hom(X,Y), are the global sec-
tions of Hom(X,Y), see [50, Section 2.4] and [28, Section 11.7].
The presheaf Map(X, Y) is fibrant as soon as Y is because every
object is cofibrant in sPsh(©) [28, Proposition 9.3.1]. The category
sPsh(©) is a model of intentional type theory with dependent sums,
dependent product, identity types, pushout types, truncations and
a univalent universe for each innaccessible cardinal above X, [56,
Theorem 6.4]. We will call set any discrete simplicial set. Since
limits and colimits are computed objectwise, sets are stable under
limits and colimits.

The following lemma is useful to construct fibrations and thus
interpret types. Namely, we recall that a type A should be inter-
preted as a fibrant object [[A], and more generally T + A (a type A
in a context I') as a fibration [A]] — [[T].

LEMMA 36. Any map f : A — B between discrete objects in sPsh(©)
is a fibration.

Proor. First, notice that if X is discrete, then for any P € ©, we
have that MpX is a set, as a limit of sets. Because of this, if A
and B are discrete then so is Bp Xy, MpA. Therefore, the map
Ap — Bp Xump MpA is a Kan fibration as a map between discrete
simplicial sets. O

B.2 Semantics of CellTT

B.2.1  Semantics of PS (Postulate 1). By Lemma 36, any objectwise
discrete presheaf is a fibrant object. We can thus model the type PS
of pasting schemes as the constant presheaf [PS]] = P — Ob(©),
which is objectwise discrete.

B.2.2  Semantics of P —ps Q (Postulate 1). We should model the
type family (P —ps Q)p o as a fibration over [ PS]*. By Lemma 36,
it is enough to model P —ps Q for each P, Q € [PS]), which can be
done by [P —ps Q] = Homg(P, Q).

B.2.3  Semantics of & : PS — U (Postulate 2). We now consider
the Yoneda embedding introduced in Postulate 2. Using Lemma 36,
it suffices to give an interpretation [ & P]| as a set valued presheaf
for each P, which we define as [ X P]] = &P, the representable
functor associated to P. The interpretation [ & || is now given by
the fibration
XP — Ob(©)
PeOb(O)
We should also give, for each o : P —ps Q, a map

[&o]: &P — XOQ

which is given by X o and the semantics of X is therefore actually
given by the Yoneda embedding. In particular, by functoriality of
& : © — sPsh(0), it shows that the equality rules postulated in
Postulate 2 hold on the nose: they could even be postulated as strict
equalities.
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For P and Q pasting schemes, [P —ps Q] is a constant discrete
presheaf with value Homg (P, Q), and b( kP — X Q) is interpreted
as the constant presheaf whose value is Hom( &P, & Q)o. Both
coincide since, by the Yoneda lemma, we have

Hom( &P, £Q)o = Map(&P, £Q) ~ Home (P, Q)
thus justifying the last point of Postulate 2.

B.2.4 Discreteness (Postulate 3). Recall that b is interpreted as the
endomorphism of sPsh(©) which to a presheaf X associates the
constant presheaf (P — Xj). A type interpreted as X in sPsh(©) is
thus b-discrete whenever the map bX — X is a weak equivalence.
That is, when for any P € Ob(©), the map x — !"x: Xy — Xpisa
weak equivalence of simplicial sets, where ! : P — [] is the terminal
arrow in ©. On the other hand, the same type will be cellularly
discrete whenever the maps

Xo — Map(&LPx £0Q,X)

are weak equivalences for each P and Q. By specializing this last
condition to Q = [], we see that cellular discrete types are b-discrete.
We now focus on the converse implication.

Definition 37. Let P, Q € Ob(®). We write Dp g (or D for short) for
the category of elements of &P x X Q € ©. The category D has as

objects the spans P <>~ R - Q and as morphisms the commutative
diagrams

P
o1 oy
AN

R — R
oY K,

Q

We write Fp o : D — Psh(0) < sPsh(0) for the functor sending
such a morphism in D to &p : &Ry — XRs.

We refer to [28, Definition 15.10.1] for the notion of category with
fibrant constants.

LEMMA 38. The category D is Reedy and has fibrant constants.

Proor. The category D is Reedy as a category of elements of a
presheaf over the Reedy category © [39, Proposition 1.1.2.6]. More
precisely, the degree of P «— R — Q is defined as the degree of R,
and the increasing (resp. decreasing) morphisms in O are those
which are increasing (resp. decreasing) in ©.

In order to see that 9 has fibrant constants, it is enough to
show that for every object @ € D the category d(« | .’Z(S) is either
empty or connected [28, Proposition 15.10.2]. Let X be the presheaf
&P x XQ (seen as a set valued presheaf), we will in fact show
this result for X any such presheaf and D its category of elements.
Suppose « : Xp is a P-cell of X. Then an object of d(« | 5) is the
choice of a decomposition @ = T*«’ for some o a strictly decreasing
morphism of © and &’ another cell of X.

- If @ is non-degenerate, then there is no-such decomposition,
hence d(a | 5) is empty.

— Inthe other case, there is a unique decomposition @ = 7*a’
where o’ is non-degenerate and o strictly decreasing. Hence,
for any other object & = T*f in a(a | Z(S), we may decom-
pose uniquely § as §*p’ where f is non-degenerate and
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y is decreasing. By uniqueness of such decompositions, it
follows that = ¥ o T and f/ = o’. That is, there is a
(unique) commutative diagram

XR

Hence, the decomposition a = o *a’ is a terminal object in

—
d(a | D), so the matching category is connected. O

LEMMA 39. Let R € © and consider the colimit

oR = colim(Q_)R)Ea((—;lR)JiQ

Then the canonical map R — XR is a monomorphsim, identify-

ing dR with the subpresheaf of morphisms f : Q — R which factors
through a strictly increasing morphism.

ProoF. Because colimits are computed pointwise and monomor-
phisms are also pointwise, we show that the map (dR)p — (XR)p
is injective for each P € Ob(©). We use the explicit description
of (dR)p as the quotient of H?:Q_)R Homg (P, Q) under the rela-

tion ~ such that (¢ o 7, f) ~ (3,7 o f) forany r € ©: we have
that the canonical map (9R)p — ( & R)p sends the class [(, f)] to
G o f. We then see that the image of (9R)p is the set of morphisms
P — R which factor through a strictly increasing morphism &.
We now show the injectivity. Suppose there is a morphism
h:P — Rsuchthat h = G o f = 7 o g for some strictly in-
- «
creasing morphisms & and 7. Then factorizing f as f o f and g
- —
as g oG, weget@o f =707 and f = 7 by uniqueness of the
factorization of h. Hence, there is a chain of identifications

@ =@ FoP~@T. 1)
=(709.9)~(7.g0%)
=(7.9) o
LEMMA 40. The nerve ND of the category D is contractible.

Proor. Recall that the category Dp o is the comma ©/ X P x X Q.
The category © is a strict test category [18, Example 5.12] and thus
totally aspherical [18, Theorem 2.8], which implies precisely the
contractibility of Dp . ]

We can thus justify Postulate 3:
THEOREM 41. Both notions of discreteness coincide.

Proor. We already have seen the first direction in Section B.2.4,
and thus focus on the other one. Suppose that bX — X is a weak
equivalence for some fibrant object X (we assume X to be fibrant
because it models a type in the empty context). Then, for each
P € Ob(0), we have a weak equivalence X, — Xp. Recall that we
want to show that the map Xy — Map( kP X XQ,X) is a weak
equivalence.

We have seen in Lemma 38 that D is Reedy with fibrant constants.
Moreover, for any object @ = (P « R — Q), the latching category
8(5 | @) is isomorphic to 8(6) | R), identifying the latching map
LyFpo — &R with the canonical map dR — KR, which is a
cofibration according to Lemma 39. Hence, by [28, Theorem 19.9.1],
we have a weak equivalence

hOCOlimD Fp’Q L) COlin’lz) Fp’Q = kPx J:Q

Then, by [28, Theorem 19.4.4] (which applies because every object
is cofibrant), we have a weak equivalence

Map( &P x £Q,X) = holimgpor Map(Fp,0, X)
Moreover, there is for each @ = (P < R — Q) a weak equivalence
Map(1,X) = Xy = Xg = Map(Fppo(a),X)

between fibrant objects (recall that X, and Xy are fibrant by [28,
Proposition 18.5.3]). Hence, by [28, Theorem 18.5.3], there is a weak
equivalence

holim pop Map(1, X) = holimper Map(Fp g, X)

By the previous reasoning, the righthand object is weakly equiva-
lent to Map( &P x X Q, X). Similarly, we have

holim pop Map(1, X) =~ Map(hocolimy 1, X)

by [28, Theorem 19.4.4]. Finally, by definiton of the injective struc-
ture on sPsh(©), and [28, Propositions 9.3.1 and 9.3.2], the pair of
adjoint functors

const

A L sPsh(®)

evo

is a Quillen pair, so const preserves homotopy colimits [28, Theo-
rem 19.4.5]. In particular, by [28, Proposition 18.1.6], we have

hocolimg 1 = const(N DP) ~ 1

because N D in contractible by Lemma 40. Whence the weak equiv-
alence

Xo — Map( &P x XQ,X) O

B.2.5 Suspension functor in sPsh(®) (Postulate 4). Let ©_, be the
category of bipointed pasting schemes and points-preserving maps,
and similarly let sPsh(®)_ denotes the simplicial category of bi-
pointed simplicial presheaves over © (it is cocomplete, and even a
model category [31, Proposition 1.1.8]). We may construct a sus-
pension functor S : sPsh(®) — sPsh(©)_ by Kan-extending the
suspension operation & oS : @ — O, < sPsh(0)_, as in [39,
Section 4.2.1.11]. By construction, this extension restricts (up to a
canonical isomorphism) to & oS on the subcategory ® — sPsh(0©),
which yields the intertwining map.

B.2.6  Hom functor as a right adjoint of S (Postulate 5). We oberve
that this Kan extension admits a right adjoint, which sends the
bipointed presheaf (X, a, b) to Homx (a, b) defined by

Homy (xo, x1)p = Map_(S &P, (X, xo,x1))

where Map_ denotes the simplicial mapping space of bipointed
maps, see also [39, Section 4.2.1.17].



B.2.7 Quillen adjunction and pushout preservation. We make the
further observation that Hom sends a map of bipointed fibrant
presheaves f : (X, xo,x1) — (Y, yo,y1) to the map

Homy (x9, x1) — Homy (yo, y1)
defined objectwise by postcomposition
fi : Map_(S&P, (X, x9,x1)) = Map_(SXP, (X, x9,x1))

This is a fibration (resp. a trivial fibration) when f is a fibration
(resp. a trivial fibration) [28, Propositions 9.3.1 and 9.3.2]. The ad-
joint pair (S 4 Hom) is thus a Quillen pair [28, Proposition 8.5.3].
Such a Quillen adjunction should yield the right notion of adjunc-
tion up to homotopy, and also ensures that S : sPsh(©) — sPsh(0)
preserves homotopy colimits, thus justifying the last assumption
in Postulate 4.

B.2.8 Connectedness of representables (Postulate 7). If [ X] is a
(fibrant) object of sPsh(®) interpreting a type X :: U, then the
interpretation of Xp for some P : PS is given by

|[Xp]] :Map(J:P, |[X]]) = [[X]]p

However, because sums are computed objectwise, the P-cells of
a sum are canonically equivalent to the sums of the P-cells, see
for instance [42, Section 5.1.2]. This justifies the connectedness of
representable types.

B.2.9 Truncations are computed objectwise (Theorem 24). Let X be
a fibrant object in sPsh(©), by definition [42, Definition 5.5.6.1], X is
n-truncated iff all the mapping spaces into it are n-truncated as Kan
complexes. Note that this implies that each Xp ~ Map( &P, X) is
n-truncated. And conversely, if each Xp is n-truncated, then because
every other object Y in sPsh(®) is a colimit of representables, the
mapping space Map(Y, X) is a limit of n-truncated Kan complexes,
so that it is n-truncated [42, Proposition 5.5.6.5]. As a consequence,
truncations may be computed objectwise.

B.2.10  Effective epimorphisms in sPsh(©). An effective epimor-
phism in sPsh(©) is the same as an effective epimorphism in its
underlying 1-topos [42, Proposition 7.2.1.14], which is given by
its homotopy category [42, Proposition 5.5.6.2], that is ©, where
the truncation is computed objectwise. Moreover, we know that
effective epimorphisms coincide with epimorphisms in a 1-topos,
and more precisely to objectwise surjections in the case of ©.

B.2.11  Semantics of coverage (Postulate 8). Recall that PS is inter-
preted as a constant set valued presheaf. Writing X for the presheaf
modeling the type X of Postulate 8, the sigma type

S(P:PS).3(c: Xp). XP
will be interpreted as the coproduct
Xp X XP
PeOb(O)

Hence the map
Xp X P X
PeOb(O)
will be an effective epimorphism if and only if all the maps

[ ] mo(xp) x Home(Q. P) — m(Xo)
PeOb(0)
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are surjective for Q € Ob(®). Indeed, this is implied by surjectivity
of the Q-th component

m(Xg) X Home (Q, Q) — m0(Xp).

This thus motivate our postulate of
S(P:PS).3(c: Xp). kP> X

being an effective epimorphism, assuming the type theoretic effec-
tive epimorphisms to indeed be modeled by effective epmorphisms
in the higher categorical semantic.

B.2.12  Higher categories (Definition 17). Our definitions of Segal-
ness (Definition 14) and completenness (Definition 15) mirrors
the known definition of such concepts (see for instance [39, Sec-
tion 4.2.1.6], where higher categories are defined as a localization
of sPsh(®)). We thus expect that our type theoretic definition of
(o0, w)-categories coincide with the usual one in the above de-
scribed model, although detailed verification is left for future work.

C Codiscrete types

In this section, we suppose that our type theory is equipped with a §
modality, as axiomatized in [57, Section 3], and explore its properties
in our setting. In terms of semantics, the functor r : Psh(®) — S of
Section 3.3 also admits a right adjoint, thus inducing a monad 4 on
Psh(©) which gives rise to an adjoint modality #§ + b on types. The
#-modal types (the types A for which the canonical map A — #A is
an equivalence) are called codiscrete. We will see in Theorem 44 that
their cells are entirely determined by their 0-skeleton. They thus
have contractible hom-types and are to be thought as a directed
counterpart of (—1)-truncated types. Among their properties, they
form a reflexive subuniverse, and all of them are Segal types.

We recall from [57, Section 3] that a type A is codiscrete if and
only if the canonical map A — A admits a retraction. We also recall
the following useful fact, where the notion of reflexive subuniverse
is defined in [59, Section 7.7].

THEOREM 42. The type of codiscrete types forms a reflexive subuni-
verse, when equipped with the § modality.

In particular, codiscrete types are stable under identity-types, depen-
dent sums and product. Finally, we recall the following fundamental
property, which states that b and § are internally adjoint to each
other, up to flattening [57, Corollary 6.26]:

THEOREM 43. Given A, B :: U, we have a natural equivalence
b(bA — B) ~b(A — §B)

The following theorem states that all the spaces Ap of cells in a
type A are determined by their 0-skeleton A,.

THEOREM 44. Let A = U be a crisp type, then A is codiscrete if
and only if the canonical mapb X P — X P induces an equivalence
Ap =b(b kP — A) forevery P : PS.

Proor. We have that A is codiscrete if and only if the canonical
map A — #A is an equivalence, if and only if the maps Ap — (#A)p
are equivalences for P : PS (by Postulate 6). By Theorem 43, we
have ($A)p = b( &P — #A) ~b(b kP — A) and we conclude. O

COROLLARY 45. Given a pasting scheme P, we have Ap = Af* for
somem : N.
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Proor. Given a pasting scheme P, writing m for the number of
0-cells in & P (this is easily seen to be a finite set by Postulate 2
and the definition of ), we have b & P = m, and therefore we have

Ap=b(XP — A)

=b(b&kP — A) by Theorem 44
=b(m — A) by definition of m
=m — DA since b preserves products [57, Theorem 6.19]

=m— Ao by Corollary 9
= A:)n
and we conclude. O

LEMMA 46. Given a codiscrete crisp type A :: U and a,b :: A, the
type homau (a, b) is contractible.

Proor. Using Postulate 6, we may show the contractibility object-
wise. Given P : PS, we have
homy (a, b)p
=b(SkP—. (Aab))
=3(f : Asp).let u” = £ in b(u(left) = a) x b(u(right) = b)
by [57, Lemma 6.8]
=3(f:b(2 > A)).letu=finb(u(0) =a) xb(u(l) =b)

by codiscreteness of A

by Postulate 5

=3(x,y :bA).(x = a’) x (y = ) by [57, Theorem 6.1]
=1 by [59, Lemma 3.11.8]

and we conclude. |

LEMMA 47. Given a codiscrete crisp type A :: U, we have Apy1 = A}
foranyn : N.

+1

Proor. Using Lemma 16 and the definition of E,+; we compute
A7 . Since A is codiscrete, using Theorem 43, one has

n+1*
Az, =2 b(DEpy — A)

It is therefore enough to show that the map bk O,y — DE, 4 is
an equivalence, where the source b & O, is equivalent to 2. Recall
that E,4; is the colimit of the diagram

o J: On+1 «
Ny
X0, £S™[3] & Op

and that, according to [57, Theorem 6.21], b preserves pushouts. In
the case n = 0, we have that b E; is the colimit of the diagram

2 2
1 4 1

and this colimit is 2. In the case n > 0, we have that bE,,; is the
colimit of the diagram

zid)/ 2 \j‘dzid/ 2 \j{dz

which is, once again, 2. We deduce that the map b & Opi1 — bEjyg
is an equivalence. o

LEMMA 48. Any crisp type A :: U is a Segal type.

PrOOF. Since b preserves pushouts [57, Theorem 6.21], we have
that forany P = [Py, - - - , Pp,| in PS, we have that b(P) is the colimit
of the diagram

N

b kSP,,

1 1
NN
b kSP; b &k SP,
where for each index i, we have b = SP; = bS & P = 2 by Postulate 4.

Hence b(P) = Finy,+; = b X P. Then, by discreteness of A, we have
b((P) = A) =b(b(P) = A) =b(b kP — A) = Ap. o

LEMMA 49. A codiscrete crisp type A :: U is an (co, w)-category if
and only if it is a proposition.

Proor. Because A is codiscrete, by Corollary 45, for every P : PS
we have Ap = AJ® where m is the number of 0-cells of P. Hence, by
Theorem 24, A is a proposition iff Ay is. Given n > 0, by Lemma 47
and Corollary 45, we have A, | = Ay = Ag = A,. The only
obstruction to completeness is thus for n = 0, i.e. A is complete iff
A] = Ay. By Lemma 47 and Corollary 45, we have AT = A; = AS,
and A is thus complete iff the diagonal map Ay — A% = A7 isan
equivalence. This occurs exactly when A is propositional, that is

iff A is. m]

D (oo, n)-Categories

We have see in Section 4 that our type theory supports a notion
of (co, w)-category. In particular, given n : N, we expect that our
type theory also supports a notion of (oo, n)-category, that is an
(00, w)-category where every cell in dimension m > n is (weakly)
invertible. We briefly study this notion here.

Definition 50. Let A :: U be an (oo, w)-category. Givenn : N, Ais an
(o0, n)-category when all its m-cells for m > n are invertible, i.e. the
canonical map A,, — A;, is an equivalence. An (oo, 0)-category is
sometimes called an co-groupoid.

THEOREM 51. A crisp type A :: U is discrete if and only if it is an
oo-groupoid.

Proor. We know from Theorem 19 that any discrete type A :: Y
is an (oo, w)-category. By completeness and discreteness we also
have A, | ~ A, = Ay =~ A, for all n. Hence any discrete type is an
co-groupoid.

Conversely, suppose A :: U is an co-groupoid. For any n : N, by
definition of co-groupoids and completeness, we have

An+l = A;+1 = An

We may now prove that Ap =~ Aj by induction on P. Supposing

given P = [Py, -, Py,] such that Ap, = A, for each i, we have
Ap =b((P) = A) by Segalness

=Asp, Xa, * - Xa, Aspy, because b preserves pullbacks

=3(ao, -, am : bA). homy (ay, ap)p, X- - X homA(am—l,am)Pm
by S 4 hom
=3(ag, " »am : DA). homa(ag, ai)o X - - - X homa (@m—1, am)o

by induction hypothesis



=3(ag, - »am :bA).b(ag = ay) X -+ X b(am-1 = am)
because A is an co-groupoid

= AO
The map bA — A is thus an equivalence by Postulate 6. O

LEMMA 52. An (oo, w)-category A :: U is an (oo, n+1)-category iff
homg (a, b) is an (oo, n)-category for every a, b :: A.

ProoF. Let A :: U be a (oo, n+1)-category and a, b :: A. Then for
any m > n, we have
homy(a, b)m =b( &k Ops1 —.. (A a, b))
=b(Em+1 —.. (A a, b))
=b(SEn—.. (A ab))

=homa(a,b),,

by S 4 hom

by assumption
because SE,,, = Ej41
by S 4 hom

Conversely, suppose that homy (a, b) are (oo, n)-categories for all
a,b :: A. Then for any m > n

Am = b(J: Oms+1 — A)

Louise Leclerc and Samuel Mimram

=b(Z(a,b: A). & Ops1 —.. (A,a,b))

=%(ab:bA)letu’ 0" =a binb( X Opi1 —.. (A u,0))
by b commuting to ¥ and X

=5(ab:bA).let u’, " = a b in homu(u, o), by S 4 hom

=3(ab:bA).letu’ v’ = a bin homu(y, )

by hypothesis
=3(a,b:bA).let ub,vb =abinb(SE,, —. (A u,0))
by S 4 hom
=b(Em+1 — A) because SE,;; = Epny1
= A;H
and we conclude. m]

THEOREM 53. (co, n)-categories are closed under pullback and co-
product.

Proor. This follows directly from Definition 50, Propositions 33
and 35 and Lemma 32. O



	Abstract
	1 Introduction
	1.1 Homotopy and type theory
	1.2 Directed homotopy type theory
	1.3 A fully directed type theory
	1.4 Cellular type theory
	1.5 Plan of the paper

	2 The category 
	2.1 The simplicial and interval categories
	2.2 Pasting schemes
	2.3 Globular sets
	2.4 The category 
	2.5 Operations in 
	2.6 Cellular spaces and categories

	3 Type theoretic setting
	3.1 Notations
	3.2 Informal semantics
	3.3 Spatial type theory
	3.4 Wild categories
	3.5 Pasting schemes
	3.6 Yoneda embedding
	3.7 Cellular cohesion
	3.8 Suspension and hom types

	4 Higher categories
	4.1 Definition of higher categories
	4.2 Further postulates
	4.3 Discrete types are (,)-categories
	4.4 Homotopy level is determined pointwise
	4.5 Homs of categories
	4.6 Representable types are (,)-categories
	4.7 Stability under sums and finite limits

	5 Conclusion and perspectives
	References
	A Omitted proofs
	B Semantics of CellTT
	B.1 Cellular spaces
	B.2 Semantics of CellTT

	C Codiscrete types
	D (,n)-Categories

