
A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

A type theory for cellular spaces

Louise Leclerc

Samuel Mimram

January 13, 2026

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Main Idea

• Simplicial Type Theory (STT)
(E. Riehl, M. Shulman, D. Gratzer, J. Weinberger, U. Buchholtz,)

• JUK = Psh(∆)
• (∞, 1)-categories = Complete Segal Spaces.

• Cellular Type Theory (CellTT)
(Using C. Rezk Θ-Spaces + F. Loubaton Thesis)
• JUK = Psh(Θ)
• (∞, ω)-categories = Θ−Spaces.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Main Idea

• Simplicial Type Theory (STT)
(E. Riehl, M. Shulman, D. Gratzer, J. Weinberger, U. Buchholtz,)
• JUK = Psh(∆)

• (∞, 1)-categories = Complete Segal Spaces.

• Cellular Type Theory (CellTT)
(Using C. Rezk Θ-Spaces + F. Loubaton Thesis)
• JUK = Psh(Θ)
• (∞, ω)-categories = Θ−Spaces.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Main Idea

• Simplicial Type Theory (STT)
(E. Riehl, M. Shulman, D. Gratzer, J. Weinberger, U. Buchholtz,)
• JUK = Psh(∆)
• (∞, 1)-categories = Complete Segal Spaces.

• Cellular Type Theory (CellTT)
(Using C. Rezk Θ-Spaces + F. Loubaton Thesis)
• JUK = Psh(Θ)
• (∞, ω)-categories = Θ−Spaces.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Main Idea

• Simplicial Type Theory (STT)
(E. Riehl, M. Shulman, D. Gratzer, J. Weinberger, U. Buchholtz,)
• JUK = Psh(∆)
• (∞, 1)-categories = Complete Segal Spaces.

• Cellular Type Theory (CellTT)
(Using C. Rezk Θ-Spaces + F. Loubaton Thesis)

• JUK = Psh(Θ)
• (∞, ω)-categories = Θ−Spaces.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Main Idea

• Simplicial Type Theory (STT)
(E. Riehl, M. Shulman, D. Gratzer, J. Weinberger, U. Buchholtz,)
• JUK = Psh(∆)
• (∞, 1)-categories = Complete Segal Spaces.

• Cellular Type Theory (CellTT)
(Using C. Rezk Θ-Spaces + F. Loubaton Thesis)
• JUK = Psh(Θ)

• (∞, ω)-categories = Θ−Spaces.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Main Idea

• Simplicial Type Theory (STT)
(E. Riehl, M. Shulman, D. Gratzer, J. Weinberger, U. Buchholtz,)
• JUK = Psh(∆)
• (∞, 1)-categories = Complete Segal Spaces.

• Cellular Type Theory (CellTT)
(Using C. Rezk Θ-Spaces + F. Loubaton Thesis)
• JUK = Psh(Θ)
• (∞, ω)-categories = Θ−Spaces.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

The interval

We add to the syntax a collection of shapes

• •
2

• •

• •

∆2 :≡
{
⟨t1, t2⟩ : 22 | t2 ≤ t1

} •

•

•

•

•

•

•

•

•
∆3

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

The interval

We add to the syntax a collection of shapes

• •
2

• •

• •

∆2 :≡
{
⟨t1, t2⟩ : 22 | t2 ≤ t1

}

•

•

•

•

•

•

•

•

•
∆3

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

The interval

We add to the syntax a collection of shapes

• •
2

• •

• •

∆2 :≡
{
⟨t1, t2⟩ : 22 | t2 ≤ t1

} •

•

•

•

•

•

•

•

•
∆3

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Simplicial types

S shape, and X type:

S→ X is a type

homX(x, y) = ∑
f :2→X

(f (0) = x)× (f (1) = y)

∀n, Xn :≡ ∆n → X is a type

So each type give rise to a simplicial type !

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Simplicial types

S shape, and X type:

S→ X is a type

homX(x, y) = ∑
f :2→X

(f (0) = x)× (f (1) = y)

∀n, Xn :≡ ∆n → X is a type

So each type give rise to a simplicial type !

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Simplicial types

S shape, and X type:

S→ X is a type

homX(x, y) = ∑
f :2→X

(f (0) = x)× (f (1) = y)

∀n, Xn :≡ ∆n → X is a type

So each type give rise to a simplicial type !

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Simplicial types

S shape, and X type:

S→ X is a type

homX(x, y) = ∑
f :2→X

(f (0) = x)× (f (1) = y)

∀n, Xn :≡ ∆n → X is a type

So each type give rise to a simplicial type !

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Segal types

When does (Xn) satisfies the Segal condition ?

(∆n → X)
∼−→ (Λn, k → X)

But (∆n → X) is also simplicial !

(∆2 → X)
∼−→ (Λ2 → X) suffices !

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Segal types

When does (Xn) satisfies the Segal condition ?

(∆n → X)
∼−→ (Λn, k → X)

But (∆n → X) is also simplicial !

(∆2 → X)
∼−→ (Λ2 → X) suffices !

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Segal types

When does (Xn) satisfies the Segal condition ?

(∆n → X)
∼−→ (Λn, k → X)

But (∆n → X) is also simplicial !

(∆2 → X)
∼−→ (Λ2 → X) suffices !

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Segal types

When does (Xn) satisfies the Segal condition ?

(∆n → X)
∼−→ (Λn, k → X)

But (∆n → X) is also simplicial !

(∆2 → X)
∼−→ (Λ2 → X) suffices !

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Complete types

By horn filling: A Segal admits composites g ◦ f .

isiso(f) :≡

 ∑
g:homA(y, x)

g ◦ f = idx

×
 ∑

h:homA(y, x)
f ◦ h = idy


x ≃A y :≡ ∑

f :homA(x, y)
isiso(f)

idtoiso : ∏
x, y:A

x =A y→ x ∼=A y

Reminiscent to Rezk-completes/univalent categories in HoTT.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Complete types

By horn filling: A Segal admits composites g ◦ f .

isiso(f) :≡

 ∑
g:homA(y, x)

g ◦ f = idx

×
 ∑

h:homA(y, x)
f ◦ h = idy



x ≃A y :≡ ∑
f :homA(x, y)

isiso(f)

idtoiso : ∏
x, y:A

x =A y→ x ∼=A y

Reminiscent to Rezk-completes/univalent categories in HoTT.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Complete types

By horn filling: A Segal admits composites g ◦ f .

isiso(f) :≡

 ∑
g:homA(y, x)

g ◦ f = idx

×
 ∑

h:homA(y, x)
f ◦ h = idy


x ≃A y :≡ ∑

f :homA(x, y)
isiso(f)

idtoiso : ∏
x, y:A

x =A y→ x ∼=A y

Reminiscent to Rezk-completes/univalent categories in HoTT.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Complete types

By horn filling: A Segal admits composites g ◦ f .

isiso(f) :≡

 ∑
g:homA(y, x)

g ◦ f = idx

×
 ∑

h:homA(y, x)
f ◦ h = idy


x ≃A y :≡ ∑

f :homA(x, y)
isiso(f)

idtoiso : ∏
x, y:A

x =A y→ x ∼=A y

Reminiscent to Rezk-completes/univalent categories in HoTT.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Complete types

By horn filling: A Segal admits composites g ◦ f .

isiso(f) :≡

 ∑
g:homA(y, x)

g ◦ f = idx

×
 ∑

h:homA(y, x)
f ◦ h = idy


x ≃A y :≡ ∑

f :homA(x, y)
isiso(f)

idtoiso : ∏
x, y:A

x =A y→ x ∼=A y

Reminiscent to Rezk-completes/univalent categories in HoTT.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

The category Θ

• Objects: Pasting schemes.

• • • •

• Morphisms: Morphisms of strict ω-categories.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

The category Θ

• Objects: Pasting schemes.

• • • •

• Morphisms: Morphisms of strict ω-categories.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Some objects of Θ

•

O0 = ∗

• •

O1 = [1]

• •

O2

• •

O3

• • • •

[n]

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Some objects of Θ

•

O0 = ∗

• •

O1 = [1]

• •

O2

• •

O3

• • • •

[n]

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Some objects of Θ

•

O0 = ∗

• •

O1 = [1]

• •

O2

• •

O3

• • • •

[n]

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Some objects of Θ

•

O0 = ∗

• •

O1 = [1]

• •

O2

• •

O3

• • • •

[n]

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Some objects of Θ

•

O0 = ∗

• •

O1 = [1]

• •

O2

• •

O3

• • • •

[n]

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

A combinatorial description of Θ

• Objects are lists of objects.

• • • • •P1 P2 Pn

• Morphisms:

• • • • [3]

• • • • • [4]

P1 P2 P3

f

Q1 Q2 Q3 Q4

δ2,2 δ2,3 δ3,4

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

A combinatorial description of Θ

• Objects are lists of objects.

• • • • •P1 P2 Pn

•

∗ = []

• •

O1 = [∗]

• •

O2 = [O1] = [[∗]]

• • • •

[n] = [∗, ∗, · · · , ∗]

• Morphisms:

• • • • [3]

• • • • • [4]

P1 P2 P3

f

Q1 Q2 Q3 Q4

δ2,2 δ2,3 δ3,4

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

A combinatorial description of Θ

• Objects are lists of objects.

• • • • •P1 P2 Pn

• Morphisms:

• • • • [3]

• • • • • [4]

P1 P2 P3

f

Q1 Q2 Q3 Q4

δ2,2 δ2,3 δ3,4

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Hom Types in STT

In STT:
homA(x, y) = ∑

f : I→A
(f 0 = x)× (f 1 = y)

x y

Then:
homhomA(x, y)(f , g) = ∑

H : I2→A

· · ·

x y

x y

f

g

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Hom Types in STT

In STT:
homA(x, y) = ∑

f : I→A
(f 0 = x)× (f 1 = y)

x y

Then:
homhomA(x, y)(f , g) = ∑

H : I2→A

· · ·

x y

x y

f

g

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Does not generalize to Θ

I =よ([1])

2-cells of I2 are pairs (x, y) of 2-cells of I.

x, y are invertible⇒ (x, y) too.

Hence I2 is 1-categorical

homA(x, y) ̸= ∑ f : I→A (f 0 = x)× (f 1 = y)

• •

• •

• •

• •

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Does not generalize to Θ

I =よ([1])

2-cells of I2 are pairs (x, y) of 2-cells of I.

x, y are invertible⇒ (x, y) too.

Hence I2 is 1-categorical

homA(x, y) ̸= ∑ f : I→A (f 0 = x)× (f 1 = y)

• •

• •

• •

• •

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Does not generalize to Θ

I =よ([1])

2-cells of I2 are pairs (x, y) of 2-cells of I.

x, y are invertible⇒ (x, y) too.

Hence I2 is 1-categorical

homA(x, y) ̸= ∑ f : I→A (f 0 = x)× (f 1 = y)

• •

• •

• •

• •

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Does not generalize to Θ

I =よ([1])

2-cells of I2 are pairs (x, y) of 2-cells of I.

x, y are invertible⇒ (x, y) too.

Hence I2 is 1-categorical

homA(x, y) ̸= ∑ f : I→A (f 0 = x)× (f 1 = y)

• •

• •

• •

• •

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Does not generalize to Θ

I =よ([1])

2-cells of I2 are pairs (x, y) of 2-cells of I.

x, y are invertible⇒ (x, y) too.

Hence I2 is 1-categorical

homA(x, y) ̸= ∑ f : I→A (f 0 = x)× (f 1 = y)

• •

• •

• •

• •

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Another approach

Workaround:

Psh(Θ) Psh(Θ)• •

$

hom

⊣

Two subgoals:
• Defining a suspension $.
• Postulating the adjunction.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Another approach

Workaround:

Psh(Θ) Psh(Θ)• •

$

hom

⊣
Two subgoals:
• Defining a suspension $.
• Postulating the adjunction.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

($ ⊣ hom) adjunction

(A→ homB(x, y))
?≃ ($A→• • (B, x, y))

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

($ ⊣ hom) adjunction

(A→ homB(x, y))︸ ︷︷ ︸
internal hom

̸= ($A→• • (B, x, y))︸ ︷︷ ︸
internal hom

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

($ ⊣ hom) adjunction

♭(A→ homB(x, y)) = ♭($A→• • (B, x, y))

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

The ♭ modality

A :: U ⇝ JAK ∈ Psh(Θ)

♭A : U ⇝ J♭AK = JAK(∗)

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Semantic of ♭

S Psh(Θ)

δ

F 7→F(∗)

⊣

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Semantic of ♭

S Psh(Θ)

δ

F 7→F(∗)

♭

⊣

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Crisp Type Theory

Why Crisp Type Theory ?

Because ♭ is not “continuous”.

Two kinds of hypothesis:

continuous X : U , x : X

Γ|· ⊢ X : U
Γ|· ⊢ ♭X : U

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Crisp Type Theory

Why Crisp Type Theory ?

Because ♭ is not “continuous”.

Two kinds of hypothesis:

continuous X : U , x : X

Γ|· ⊢ X : U
Γ|· ⊢ ♭X : U

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Crisp Type Theory

Why Crisp Type Theory ?

Because ♭ is not “continuous”.

Two kinds of hypothesis:

continuous X : U , x : X

Γ|· ⊢ X : U
Γ|· ⊢ ♭X : U

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Crisp Type Theory

Why Crisp Type Theory ?

Because ♭ is not “continuous”.

Two kinds of hypothesis:

continuous X : U , x : X
crisp X :: U , x :: X

Γ|· ⊢ X : U
Γ|· ⊢ ♭X : U

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Crisp Type Theory

Why Crisp Type Theory ?

Because ♭ is not “continuous”.

Two kinds of hypothesis:

continuous X : U , x : X
crisp X :: U , x :: X

Γ|· ⊢ X : U
Γ|· ⊢ ♭X : U

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

CellTT

CellTT = HoTT + Idempotent comodality︸ ︷︷ ︸
Crisp Type Theory

+ Axioms

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Pasting Schemes

pasting schemes:
{

PS : Set
[] : Array PS→ PS

morphisms: P→PS Q : Set (P, Q : PS)

suspension:
{

$: PS → PS
P → [P]

∗ = [] [n] = [∗, · · · , ∗]

On = $n[] = [[· · · [] · · ·]]

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Pasting Schemes

pasting schemes:
{

PS : Set
[] : Array PS→ PS

morphisms: P→PS Q : Set (P, Q : PS)

suspension:
{

$: PS → PS
P → [P]

∗ = [] [n] = [∗, · · · , ∗]

On = $n[] = [[· · · [] · · ·]]

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Pasting Schemes

pasting schemes:
{

PS : Set
[] : Array PS→ PS

morphisms: P→PS Q : Set (P, Q : PS)

suspension:
{

$: PS → PS
P → [P]

∗ = [] [n] = [∗, · · · , ∗]

On = $n[] = [[· · · [] · · ·]]

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Pasting Schemes

pasting schemes:
{

PS : Set
[] : Array PS→ PS

morphisms: P→PS Q : Set (P, Q : PS)

suspension:
{

$: PS → PS
P → [P]

∗ = [] [n] = [∗, · · · , ∗]

On = $n[] = [[· · · [] · · ·]]

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Yoneda Embedding

Yoneda: よ : PS→ U

X :: U ⇝ XP :≡ ♭(よ(P)→ X)

f :: X→ Y ⇝ fP : XP → YP

σ : P→PS Q ⇝ σ∗ : XQ → XP

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Yoneda Embedding

Yoneda: よ : PS→ U

X :: U ⇝ XP :≡ ♭(よ(P)→ X)

f :: X→ Y ⇝ fP : XP → YP

σ : P→PS Q ⇝ σ∗ : XQ → XP

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Yoneda Embedding

Yoneda: よ : PS→ U

X :: U ⇝ XP :≡ ♭(よ(P)→ X)

f :: X→ Y ⇝ fP : XP → YP

σ : P→PS Q ⇝ σ∗ : XQ → XP

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Yoneda Embedding

Yoneda: よ : PS→ U

X :: U ⇝ XP :≡ ♭(よ(P)→ X)

f :: X→ Y ⇝ fP : XP → YP

σ : P→PS Q ⇝ σ∗ : XQ → XP

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Some Axioms

• Equivalences are pointwise(
∏
P:PS

is-equiv(fP)

)
→ is-equiv(f)

• よis fully faithfull
• (–)P preserves colimits
• (∑ P:PS ∑ c:XP

よP
)
→ X is an effective epi ((−1)-truncated)

• ♭-discreteness is cellular discreteness:

is-equiv(♭X→ X)↔ ∏
P:PS

is-equiv(X→ (よ(P)→ X))

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Some Axioms

• Equivalences are pointwise(
∏
P:PS

is-equiv(fP)

)
→ is-equiv(f)

• よis fully faithfull
• (–)P preserves colimits
• (∑ P:PS ∑ c:XP

よP
)
→ X is an effective epi ((−1)-truncated)

• ♭-discreteness is cellular discreteness:

is-equiv(♭X→ X)↔ ∏
P:PS

is-equiv(X→ (よ(P)→ X))

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Some Axioms

• Equivalences are pointwise(
∏
P:PS

is-equiv(fP)

)
→ is-equiv(f)

• よis fully faithfull
• (–)P preserves colimits
• (∑ P:PS ∑ c:XP

よP
)
→ X is an effective epi ((−1)-truncated)

• ♭-discreteness is cellular discreteness:

is-equiv(♭X→ X)↔ ∏
P:PS

is-equiv(X→ (よ(P)→ X))

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Some Axioms

• Equivalences are pointwise(
∏
P:PS

is-equiv(fP)

)
→ is-equiv(f)

• よis fully faithfull
• (–)P preserves colimits
• (∑ P:PS ∑ c:XP

よP
)
→ X is an effective epi ((−1)-truncated)

• ♭-discreteness is cellular discreteness:

is-equiv(♭X→ X)↔ ∏
P:PS

is-equiv(X→ (よ(P)→ X))

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Levelwiseness of level

Let X :: U , then for any n ≥ −2,

is-n-type(X)↔ ∏
P:PS

is-n-type(XP)

• Case n = −2: X ≃ 1←→ ∏P:PS(XP ≃ 1)

• Case n ≥ −1: LR implication: ♭∥X∥n ≃ ∥♭X∥n

HoTT book: is-n-type(X)↔ is-equiv
(

XSn+1 → X
)

↔ ∏P::PS is-equiv
(
(XSn+1

)P → XP

)
(XSn+1

)P ≃ ♭(よP× Sn+1 → X) ≃ ♭(Sn+1 → XP)

♭(Sn+1 → XP) ≃ ♭XP ≃ XP.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Levelwiseness of level

Let X :: U , then for any n ≥ −2,

is-n-type(X)↔ ∏
P:PS

is-n-type(XP)

• Case n = −2: X ≃ 1←→ ∏P:PS(XP ≃ 1)

• Case n ≥ −1: LR implication: ♭∥X∥n ≃ ∥♭X∥n

HoTT book: is-n-type(X)↔ is-equiv
(

XSn+1 → X
)

↔ ∏P::PS is-equiv
(
(XSn+1

)P → XP

)
(XSn+1

)P ≃ ♭(よP× Sn+1 → X) ≃ ♭(Sn+1 → XP)

♭(Sn+1 → XP) ≃ ♭XP ≃ XP.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Levelwiseness of level

Let X :: U , then for any n ≥ −2,

is-n-type(X)↔ ∏
P:PS

is-n-type(XP)

• Case n = −2: X ≃ 1←→ ∏P:PS(XP ≃ 1)

• Case n ≥ −1: LR implication: ♭∥X∥n ≃ ∥♭X∥n

HoTT book: is-n-type(X)↔ is-equiv
(

XSn+1 → X
)

↔ ∏P::PS is-equiv
(
(XSn+1

)P → XP

)
(XSn+1

)P ≃ ♭(よP× Sn+1 → X) ≃ ♭(Sn+1 → XP)

♭(Sn+1 → XP) ≃ ♭XP ≃ XP.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Levelwiseness of level

Let X :: U , then for any n ≥ −2,

is-n-type(X)↔ ∏
P:PS

is-n-type(XP)

• Case n = −2: X ≃ 1←→ ∏P:PS(XP ≃ 1)

• Case n ≥ −1: LR implication: ♭∥X∥n ≃ ∥♭X∥n

HoTT book: is-n-type(X)↔ is-equiv
(

XSn+1 → X
)

↔ ∏P::PS is-equiv
(
(XSn+1

)P → XP

)

(XSn+1
)P ≃ ♭(よP× Sn+1 → X) ≃ ♭(Sn+1 → XP)

♭(Sn+1 → XP) ≃ ♭XP ≃ XP.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Levelwiseness of level

Let X :: U , then for any n ≥ −2,

is-n-type(X)↔ ∏
P:PS

is-n-type(XP)

• Case n = −2: X ≃ 1←→ ∏P:PS(XP ≃ 1)

• Case n ≥ −1: LR implication: ♭∥X∥n ≃ ∥♭X∥n

HoTT book: is-n-type(X)↔ is-equiv
(

XSn+1 → X
)

↔ ∏P::PS is-equiv
(
(XSn+1

)P → XP

)
(XSn+1

)P ≃ ♭(よP× Sn+1 → X) ≃ ♭(Sn+1 → XP)

♭(Sn+1 → XP) ≃ ♭XP ≃ XP.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Levelwiseness of level

Let X :: U , then for any n ≥ −2,

is-n-type(X)↔ ∏
P:PS

is-n-type(XP)

• Case n = −2: X ≃ 1←→ ∏P:PS(XP ≃ 1)

• Case n ≥ −1: LR implication: ♭∥X∥n ≃ ∥♭X∥n

HoTT book: is-n-type(X)↔ is-equiv
(

XSn+1 → X
)

↔ ∏P::PS is-equiv
(
(XSn+1

)P → XP

)
(XSn+1

)P ≃ ♭(よP× Sn+1 → X) ≃ ♭(Sn+1 → XP)

♭(Sn+1 → XP) ≃ ♭XP ≃ XP.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Suspension

We extend $ to U .
• よ($P) = $(よP)

• If P = [P1, P2, · · · , Pn]:

($X)P ∼= 1 +

(
∑

i : Finn

XPi

)
+ 1

• • • •

• •

P1, ··· , Pi−1 Pi Pi+1, ··· , Pn

X

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Suspension

We extend $ to U .
• よ($P) = $(よP)
• If P = [P1, P2, · · · , Pn]:

($X)P ∼= 1 +

(
∑

i : Finn

XPi

)
+ 1

• • • •

• •

P1, ··· , Pi−1 Pi Pi+1, ··· , Pn

X

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Hom Types

We postulate an adjunction

♭(A→ homB(x, y)) ∼= ♭($A→• • (B, x, y))

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Cellular Realization

⟨[P1, · · · , Pm]⟩ :≡

colim

1 1 1

$⟨P1⟩ $⟨P2⟩ · · · $⟨Pm⟩

• • • •

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Segal Types

We define a map ⟨P⟩ →よP

We define is-Segal:

♭(よP→ X)
∼−→ ♭(⟨P⟩ → X)

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Segal Types

We define a map ⟨P⟩ →よP

We define is-Segal:

♭(よP→ X)
∼−→ ♭(⟨P⟩ → X)

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Complete Types

We define a type E as the pushout

よ[1] +よ[1] よ[3]

1 + 1 E

α, β

⌟

representing equivalences

En+1 :≡ $nE

We define is-complete:

♭(Dn → X)
∼−→ ♭(En+1 → X)

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Complete Types

We define a type E as the pushout

よ[1] +よ[1] よ[3]

1 + 1 E

α, β

⌟

representing equivalences

En+1 :≡ $nE

We define is-complete:

♭(Dn → X)
∼−→ ♭(En+1 → X)

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Complete Types

We define a type E as the pushout

よ[1] +よ[1] よ[3]

1 + 1 E

α, β

⌟

representing equivalences

En+1 :≡ $nE

We define is-complete:

♭(Dn → X)
∼−→ ♭(En+1 → X)

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

(∞, ω)-categories

As in Riehl-Shulman STT, there is a completeness condition.
is-complete(X)

(∞, ω)-categories = complete Segal Types.

Cat∞, ω = ∑
X:U

is-Segal(X)× is-complete(X)

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Some elementary results

• (∞, ω)-categories are stable by pullback and sum.

• hom-types of (∞, ω)-categories still are.
• discrete types are (∞, ω)-categories.
• representables typesよP are (∞, ω)-categories.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Some elementary results

• (∞, ω)-categories are stable by pullback and sum.
• hom-types of (∞, ω)-categories still are.

• discrete types are (∞, ω)-categories.
• representables typesよP are (∞, ω)-categories.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Some elementary results

• (∞, ω)-categories are stable by pullback and sum.
• hom-types of (∞, ω)-categories still are.
• discrete types are (∞, ω)-categories.

• representables typesよP are (∞, ω)-categories.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Some elementary results

• (∞, ω)-categories are stable by pullback and sum.
• hom-types of (∞, ω)-categories still are.
• discrete types are (∞, ω)-categories.
• representables typesよP are (∞, ω)-categories.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

What’s next ?

Main goal: Proving a Yoneda Lemma.

• Define a well-suited notion of fibration.
• Having a functorial homA : Aop ×A→ U .
• Types of lax and oplax functors A ⇀ B and A ⇁ B.
• Crans-Gray tensor product ⊠.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

What’s next ?

Main goal: Proving a Yoneda Lemma.
• Define a well-suited notion of fibration.

• Having a functorial homA : Aop ×A→ U .
• Types of lax and oplax functors A ⇀ B and A ⇁ B.
• Crans-Gray tensor product ⊠.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

What’s next ?

Main goal: Proving a Yoneda Lemma.
• Define a well-suited notion of fibration.
• Having a functorial homA : Aop ×A→ U .

• Types of lax and oplax functors A ⇀ B and A ⇁ B.
• Crans-Gray tensor product ⊠.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

What’s next ?

Main goal: Proving a Yoneda Lemma.
• Define a well-suited notion of fibration.
• Having a functorial homA : Aop ×A→ U .
• Types of lax and oplax functors A ⇀ B and A ⇁ B.

• Crans-Gray tensor product ⊠.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

What’s next ?

Main goal: Proving a Yoneda Lemma.
• Define a well-suited notion of fibration.
• Having a functorial homA : Aop ×A→ U .
• Types of lax and oplax functors A ⇀ B and A ⇁ B.
• Crans-Gray tensor product ⊠.

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Towards a bunched-affine variant of HoTT

Γ, ∆ ::= ⋄ | Γ ∗ ∆ | Γ, x : A

• Contexts are trees.
• Weakening is admissible.
• A non-symmetric affine product ⊗.
• New abstractions ∂ and ∂for adjoints to ⊗.

homA(x, y) = ∑
f :よ[1]⇁A

(⟨0 | f = x)× (⟨1 | f = y)

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Towards a bunched-affine variant of HoTT

Γ, ∆ ::= ⋄ | Γ ∗ ∆ | Γ, x : A

• Contexts are trees.

• Weakening is admissible.
• A non-symmetric affine product ⊗.
• New abstractions ∂ and ∂for adjoints to ⊗.

homA(x, y) = ∑
f :よ[1]⇁A

(⟨0 | f = x)× (⟨1 | f = y)

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Towards a bunched-affine variant of HoTT

Γ, ∆ ::= ⋄ | Γ ∗ ∆ | Γ, x : A

• Contexts are trees.
• Weakening is admissible.

• A non-symmetric affine product ⊗.
• New abstractions ∂ and ∂for adjoints to ⊗.

homA(x, y) = ∑
f :よ[1]⇁A

(⟨0 | f = x)× (⟨1 | f = y)

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Towards a bunched-affine variant of HoTT

Γ, ∆ ::= ⋄ | Γ ∗ ∆ | Γ, x : A

• Contexts are trees.
• Weakening is admissible.
• A non-symmetric affine product ⊗.

• New abstractions ∂ and ∂for adjoints to ⊗.

homA(x, y) = ∑
f :よ[1]⇁A

(⟨0 | f = x)× (⟨1 | f = y)

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Towards a bunched-affine variant of HoTT

Γ, ∆ ::= ⋄ | Γ ∗ ∆ | Γ, x : A

• Contexts are trees.
• Weakening is admissible.
• A non-symmetric affine product ⊗.
• New abstractions ∂ and ∂for adjoints to ⊗.

homA(x, y) = ∑
f :よ[1]⇁A

(⟨0 | f = x)× (⟨1 | f = y)

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Towards a bunched-affine variant of HoTT

Γ, ∆ ::= ⋄ | Γ ∗ ∆ | Γ, x : A

• Contexts are trees.
• Weakening is admissible.
• A non-symmetric affine product ⊗.
• New abstractions ∂ and ∂for adjoints to ⊗.

homA(x, y) = ∑
f :よ[1]⇁A

(⟨0 | f = x)× (⟨1 | f = y)

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Some rules

(⊗-INTRO)
Λ | Γ ⊢ a : A Λ | ∆ ⊢ b : B

Λ | Γ⊗ ∆ ⊢ a⊗ b : A ⊗ B

(⇀-INTRO)

Λ | ⋄ ⊢ A : U
Λ | ⋄ ⊢ B : U Λ | (x : A)⊗ Γ ⊢ b : B

Λ | Γ ⊢ ∂x.b : A ⇀ B

(⇀-ELIM)
Λ | Γ ⊢ a : A Λ | ∆ ⊢ f : A ⇀ B

Λ | Γ⊗ ∆ ⊢ ⟨a | f : B

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Some rules

(⊗-INTRO)
Λ | Γ ⊢ a : A Λ | ∆ ⊢ b : B

Λ | Γ⊗ ∆ ⊢ a⊗ b : A ⊗ B

(⇀-INTRO)

Λ | ⋄ ⊢ A : U
Λ | ⋄ ⊢ B : U Λ | (x : A)⊗ Γ ⊢ b : B

Λ | Γ ⊢ ∂x.b : A ⇀ B

(⇀-ELIM)
Λ | Γ ⊢ a : A Λ | ∆ ⊢ f : A ⇀ B

Λ | Γ⊗ ∆ ⊢ ⟨a | f : B

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Some rules

(⊗-INTRO)
Λ | Γ ⊢ a : A Λ | ∆ ⊢ b : B

Λ | Γ⊗ ∆ ⊢ a⊗ b : A ⊗ B

(⇀-INTRO)

Λ | ⋄ ⊢ A : U
Λ | ⋄ ⊢ B : U Λ | (x : A)⊗ Γ ⊢ b : B

Λ | Γ ⊢ ∂x.b : A ⇀ B

(⇀-ELIM)
Λ | Γ ⊢ a : A Λ | ∆ ⊢ f : A ⇀ B

Λ | Γ⊗ ∆ ⊢ ⟨a | f : B

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Some rules (2)

(⇁-INTRO)

Λ | ⋄ ⊢ A : U
Λ | ⋄ ⊢ B : U Λ | Γ⊗ (x : A) ⊢ b : B

Λ | Γ ⊢ ∂x.b : A ⇁ B

(⇁-ELIM)
Λ | Γ ⊢ f : A ⇁ B Λ | ∆ ⊢ a : A

Λ | Γ⊗ ∆ ⊢ f |a⟩ : B

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

Some rules (2)

(⇁-INTRO)

Λ | ⋄ ⊢ A : U
Λ | ⋄ ⊢ B : U Λ | Γ⊗ (x : A) ⊢ b : B

Λ | Γ ⊢ ∂x.b : A ⇁ B

(⇁-ELIM)
Λ | Γ ⊢ f : A ⇁ B Λ | ∆ ⊢ a : A

Λ | Γ⊗ ∆ ⊢ f |a⟩ : B

A recollection on STT The category Θ The problem of hom types Crisp Type Theory CellTT What’s next ?

The end

Thank you !

Questions ?

• •

	A recollection on STT
	The category bold0mu mumu
	The problem of hom types
	Crisp Type Theory
	CellTT
	What's next ?

