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(E. Riehl, M. Shulman, D. Gratzer, ]. Weinberger, U. Buchholtz,)
® [U] =Psh(A)
® (oo, 1)-categories = Complete Segal Spaces.

® Cellular Type Theory (CellTT)
(Using C. Rezk ®-Spaces + F. Loubaton Thesis)
¢ [U] = Psh(O®)
® (0o, w)-categories = O®—Spaces.
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0e00

Simplicial types

S shape, and X type:
§— X isatype
homx(x, y) = ), (f(0) =) x (f(1) =)
f 2—X

Vn, X,:=A, — X isatype

So each type give rise to a simplicial type !
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Segal types

When does (X)) satisfies the Segal condition ?
(A" = X) = (A x — X)
But (A" — X) is also simplicial !

(A* = X) =5 (Ay — X) suffices !
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Complete types

By horn filling: A Segal admits composites g o f.

isiso(f) := Y gof=idy| x Y, foh=id,
gthomu (y, x) h:homy (v, x)

x~pyi= ), isiso(f)

f:homy (x,y)

idtoiso : [[x=ay > x4y
x, A

Reminiscent to Rezk-completes/univalent categories in HoTT.
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The category O

® Objects: Pasting schemes.

N

® Morphisms: Morphisms of strict w-categories.
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® Objects are lists of objects.
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00 :

Hom Types in STT
In STT:
homa(x,y) = Y (FO=x)x(fl=y)
fi1=A
X y
Then:

homhomA(x,y) (/[/ g) = Z

X —8—— 1y
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The problem of hom types
[l 1o} :

Does not generalize to ©®

I=x([1])
2-cells of I? are pairs (x, y) of 2-cells of I.
x, y are invertible = (x, y) too.

Hence I? is 1-categorical

homa(x, y) # Lssa (fO=x) x (f1=1y)
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The problem of hom types
folel } :

Another approach

Workaround:

Psh(©) 1 Psh(©),..

Two subgoals:
® Defining a suspension $.

® Postulating the adjunction.
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($ 4 hom) adjunction

»(A — homp(x, y)) = H($A —ee (B, X, ¥))



The b modality

AzU ~ [A] € Psh(©)

AU~ A = [A](*)
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Crisp Type Theory

Why Crisp Type Theory ?

Because b is not “continuous”.
Two kinds of hypothesis:

continuous X:U,x: X
crisp XaoU,x:X

I-=X:U
T|-=bX:U
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CellIT = HoTT + Idempotent comodality + Axioms

Crisp Type Theory
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Yoneda Embedding

Yoneda: X:PS — U
X:U ~ Xp:=b(&K(P)— X)
fuX—=Y ~ fp:Xp—=Yp

U:P—)psQ ~ U*:XQ—>XP
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Some Axioms

® Equivalences are pointwise
[ [ is-equiv(fp) | — is-equiv(f)
P:PS

® Xis fully faithfull

® (—)p preserves colimits

[ ]

(Cpps Yexp XP) — X is an effective epi ((—1)-truncated)

Corollary 5.1.6.11. Lef € be an oo-category which admits small colimits. Let S be a small simplicial set
and F : P(S) — € a colimit preserving functor. Then F is an equivalence if and only if the following
conditions are satisfied:

(1) The compesitton f = Foj: 8§ — € is fully faithful

(2) For every vertex s € S, the object f(s) € € is completely compact.

(3) The set of objects {f(s): s € So} generates € under colimats
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Some Axioms

Equivalences are pointwise

<H is—equiv(fp)) — is-equiv(f)

P:PS

X is fully faithfull
(-)p preserves colimits
(L p.ps Lex, ¥P) — X is an effective epi ((—1)-truncated)

b-discreteness is cellular discreteness:

is-equiv(bX — X) < [ | is-equiv(X — (X(P) — X))
P:PS
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Levelwiseness of level

Let X :: U, then for any n > —2,

is-n-type(X) > [ [ is-n-type(Xp)
P:PS

® Casen = —2: X~1+—[lpps(Xp>~1)

® Casen > —1: LR implication: b||X||, =~ ||bX]|»
HoTT book: is-n-type(X) < is-equiv (XS"+1 — X)
& Tp..ps is-equiv ((XS"“)p — Xp)

(XS")p 2 b(XP x 5" — X) ~ h(S"! — Xp)
b(S”H — Xp) ~ bXp ~ Xp.
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Suspension

We extend $ to U.
® L($P) = $(&P)
o [fP— [Pl, Py, .- ,Pn]i

s g)

i:Fin,

Py, Pig P; o Piy1,+, Py
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Hom Types

We postulate an adjunction

p(A — homp(x, y)) = H($A —ee (B, x, ¥))



Cellular Realization

([P1, -+, Pu]) =
1 1 1
colim / \ / \ / \
$(P1) $(P,) $(Pp)
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Segal Types

We define a map (P) — &P
We define is-Segal:

H(EP — X) 5 b((P) — X)
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Complete Types

We define a type E as the pushout

K1)+ £1] — 2% xp3)

|

1+1 E

representing equivalences
E.i1:=9$"E
We define is-complete:

b(Dy — X) — b(Eypq — X)
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(00, w)-categories

As in Riehl-Shulman STT, there is a completeness condition.
is-complete(X)

(00, w)-categories = complete Segal Types.

Cate,w = ) _ is-Segal(X) x is-complete(X)
XU



CellTT
00000000000e

Some elementary results

® (o0, w)-categories are stable by pullback and sum.



CellTT
00000000000e

Some elementary results

® (o0, w)-categories are stable by pullback and sum.

® hom-types of (co, w)-categories still are.



CellTT
00000000000e

Some elementary results

® (o0, w)-categories are stable by pullback and sum.
® hom-types of (co, w)-categories still are.

e discrete types are (oo, w)-categories.



CellTT
00000000000e

Some elementary results

(00, w)-categories are stable by pullback and sum.

hom-types of (oo, w)-categories still are.

discrete types are (oo, w)-categories.

® representables types &P are (oo, w)-categories.
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What's next ?

Main goal: Proving a Yoneda Lemma.
® Define a well-suited notion of fibration.
® Having a functorial homy : A% x A — U.
® Types of lax and oplax functors A — Band A — B.

® Crans-Gray tensor product X.



What's next ?
00000

Towards a bunched-affine variant of HoTT

[LA == o|T*xA|l,x:A



What's next ?
00000

Towards a bunched-affine variant of HoTT

[LA == o|T*xA|l,x:A

e Contexts are trees.



What's next ?
00000

Towards a bunched-affine variant of HoTT

[LA == o|T*xA|l,x:A

e Contexts are trees.

® Weakening is admissible.



What's next ?
00000

Towards a bunched-affine variant of HoTT

e Contexts are trees.
® Weakening is admissible.

¢ A non-symmetric affine product ®.



What's next ?
00000

Towards a bunched-affine variant of HoTT

Contexts are trees.

Weakening is admissible.

¢ A non-symmetric affine product ®.

New abstractions d and p for adjoints to ®.



What's next ?
00000

Towards a bunched-affine variant of HoTT

Contexts are trees.

Weakening is admissible.

¢ A non-symmetric affine product ®.

New abstractions d and p for adjoints to ®.

homa(x, y) = ) (0] f=2)x ({1 f=y)
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Some rules

A|TFa:A A|AFDb:B

(®-INTRO)
A|TR®AFa®b:AQB

AloFA:U
A|loFB:U A|(x:A)®TFb:B
(—-INTRO)
A|THoxb:A—B
A|TFa:A A|AFf:A—B
(—-ELIM)

A|T®AF (a] f:B
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Some rules (2)

AloFA:U
A|loFB:U A|T®(x:A)Fb:B

(—-INTRO)
A|Fl—ex.b:A—,B

A|THf:A—B A|AFa:A
(—-ELIM)
A|T®AFf|a):B




Thank you !

Questions ?
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